
 

 
Acoustic and optical variations during 

rapid downward motion episodes in the 
deep north-western Mediterranean Sea 

 
H. van Harenz,*, I. Taupier-Letageah,1, J.A. Aguilara, A. Albertb, M. Anghinolfic, G. Antond, S. 
Anvare, M. Ardidf , A.C. Assis Jesusg, T. Astraatmadjag,2, J-J. Auberth, R. Auerd, B. Bareti, S. 
Basaj, M. Bazzottik,ℓ, V. Bertinh, S. Biagik,ℓ, C. Bigongiaria, M. Bou-Cabof , M.C. Bouwhuisg, 
A. Brownh, J. Brunnerh,3, J. Bustoh, F. Camarenaf, A. Caponem,n, G. Carminatik,ℓ,4, J. Carrh, D. 
Castelb, E. Castorinao,p, V. Cavasinnio,p, S. Cecchiniℓ,q, Ph. Charvisr, T. Chiarusiℓ, M. Circellas, 
R. Coniglionet, H. Costantinic, N. Cottiniu, P. Coyleh, C. Curtilh, G. De Bonism,n, M.P. 
Decowskig, I. Dekeyserv, A. Deschampsr, C. Distefanot, C. Donzaudi,w, D. Dornich,a, D. 
Drouhinb, T. Eberld, U. Emanuelea, J-P. Ernenweinh, S. Escoffierh, F. Fehrd, V. Flaminioo,p, K. 
Fratinix,c, U. Fritschd, J-L. Fudav, G. Giacomellik,ℓ, J.P. Gómez-Gonzáleza, K. Grafd, G. 
Guillardy, G. Halladjianh, G. Hallewellh, A.J. Heijboerg, Y. Hellor, J.J. Hernández-Reya, J. 
Hößld, M. de Jongg,2, N. Kalantar-Nayestanakiaa, O. Kalekind, A. Kappesd, U. Katzd, P. 
Kooijmang,ab,ac, C. Kopperd, A. Kouchneri, W. Kretschmerd, R. Lahmannd, P. Lamaree, G. 
Lambardh, G. Larosaf , H. Laschinskyd, D. Lefèvrev, G. Lelaizanth, G. Limg,ac, D. Lo Prestiad, 
H. Loehneraa, S. Loucatosu, F. Lucarellim,n, K. Lyonsy, S. Manganoa, M. Marcelinj, A. 
Margiottak,ℓ, J.A. Martinez-Moraf, G. Maurinu, A. Mazurej, M. Melissash, T. Montarulis,ae, M. 
Morgantio,p, L. Moscosou,i, H. Motzd, C. Naumannu, M. Neffd, R. Ostaschd, G. Palioselitisg, 
G.E. Păvălaşaf, P. Payreh, J. Petrovicg, P. Piattellit, N. Picot-Clementeh, C. Picqu, R. Pilletr, V. 
Popaaf, T. Pradiery, E. Presanig, C. Raccab, A. Raduaf, C. Reedh,g, G. Riccobenet, C. Richardtd, 
M. Rujoiuaf, G.V. Russoad, F. Salesaa, F. Schoeckd, J-P. Schulleru, R. Shanidzed, F. Simeonen, 
M. Spuriok,ℓ, J.J.M. Steijgerg, Th. Stolarczyku, C. Tamburiniv, L. Tascaj, S. Toscanoa, B. 
Vallageu, V. Van Elewycki, M. Vecchim, P. Verninu, G. Wijnkerg, E. de Wolfg,ac, H. Yepesa, 
D. Zaborovag, J.D. Zornozaa, J. Zúñigaa 
 

aIFIC - Instituto de Física Corpuscular, Edificios Investigación de Paterna, CSIC - Universitat de 
València, Apdo. de Correos 22085, 46071 Valencia, Spain 

bGRPHE - Institut universitaire de technologie de Colmar, 34 rue du Grillenbreit BP 50568 - 68008 
Colmar, France 

cDipartimento di Fisica dell’Università e Sezione INFN, Via Dodecaneso 33, 16146 Genova, Italy 
dFriedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen Centre for Astroparticle Physics, 

Erwin-Rommel-Str. 1, D-91058 Erlangen, Germany 
eDirection des Sciences de la Matière - Institut de recherche sur les lois fondamentales de l’Univers 
Service d’Electronique des Détecteurs et d’Informatique, CEA Saclay, 91191 Gif-sur-Yvette Cedex, 

France 
f Institut d’Investigación per a la Gestío Integrada de les Zones Costaneres (IGIC) - Universitat 

Politècnica de València. C/Paranimf, 1. E-46730 Gandia, Spain 
gFOM Instituut voor Subatomaire Fysica Nikhef, Science Park 105, 1098 XG Amsterdam,  

the Netherlands 
hCPPM - Centre de Physique des Particules de Marseille, CNRS/IN2P3 et Université de la 

Méditerranée, 163 Avenue de Luminy, Case 902, 13288 Marseille Cedex 9, France 
iAPC - Laboratoire AstroParticule et Cosmologie, UMR 7164 (CNRS, Université Paris 7 Diderot, 

CEA, Observatoire de Paris) 10, rue Alice Domon et L´eonie Duquet 75205 Paris Cedex 13, France 
jLAM - Laboratoire d’Astrophysique de Marseille, CNRS/INSU et Université de Provence, Traverse 

du Siphon - Les Trois Lucs, BP 8, 13012 Marseille Cedex 12, France 
kDipartimento di Fisica dell’Università e Sezione INFN, Viale Berti Pichat 6/2, 40127 Bologna, Italy 

ℓINFN-Sezione di Bologna, Viale Berti Pichat 6/2, 40127 Bologna, Italy 



 2

mDipartimento di Fisica dell’Università La Sapienza, P.le Aldo Moro 2, 00185 Roma, Italy 
nINFN-Sezione di Roma, P.le Aldo Moro 2, 00185 Roma, Italy 

oDipartimento di Fisica dell’Università, Largo B. Pontecorvo 3, 56127 Pisa, Italy 
pINFN-Sezione di Pisa, Largo B. Pontecorvo 3, 56127 Pisa, Italy 

qINAF-IASF, via P. Gobetti 101, 40129 Bologna, Italy 
rGéoSciences Azur, CNRS/INSU, IRD, Université de Nice Sophia-Antipolis, Université Pierre et 

Marie Curie - Observatoire Océanologique de Villefranche, BP48, 2 quai de la Darse, 06235 
Villefranche-sur-Mer Cedex, France 

sINFN-Sezione di Bari, Via E. Orabona 4, 70126 Bari, Italy 
tINFN - Laboratori Nazionali del Sud (LNS), Via S. Sofia 44, 95123 Catania, Italy 

uDirection des Sciences de la Matière - Institut de recherche sur les lois fondamentales de l’Univers-
Service de Physique des Particules, CEA Saclay, 91191 Gif-sur-Yvette Cedex, France 

vCOM - Centre dOcéanologie de Marseille, CNRS/INSU et Université de la Méditerranée, 163 Avenue 
de Luminy, Case 901, 13288 Marseille Cedex 9, France 

wUniversité Paris-Sud 11 - Département de Physique - F - 91403 Orsay Cedex, France 
xDipartimento di Fisica dell’Università, Via Dodecaneso, 16146 Genova, Italy 

yIPHC-Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg et IN2P3/CNRS, 23 rue du 
Loess, BP 28, 67037 Strasbourg Cedex 2, France 

zRoyal Netherlands Institute for Sea Research (NIOZ), Landsdiep 4,  1797 SZ ’t Horntje (Texel), 
the Netherlands 

aaKernfysisch Versneller Instituut (KVI), University of Groningen, Zernikelaan 25, 9747 AA 
Groningen, the Netherlands 

abUniversiteit Utrecht, Faculteit Betawetenschappen, Princetonplein 5, 3584 CC Utrecht,  
the Netherlands 

acUniversteit van Amsterdam, Institut voor Hoge-Energiefysika, Science Park 105, 1098 XG 
Amsterdam, the Netherlands 

adDipartimento di Fisica ed Astronomia dell’Università, Viale Andrea Doria 6, 95125 Catania, Italy 
aeUniversity of Wisconsin – Madison, 53715, WI, USA 

afInstitute for Space Sciences, R-77125 Bucharest, Mágurele, Romania 
agITEP - Institute for Theoretical and Experimental Physics, B. Cheremushkinskaya 25, 117218 

Moscow, Russia 
ahLaboratoire d'Oceanographie Physique et de Biogeochimie (LOPB), CNRS UMR 6535 Université de 

la Mediterranée, Centre d'Oceanologie de Marseille, Antenne de Toulon c/o IFREMER, BP 330, F-
83507 La Seyne, France 

 
* Corresponding author. E-mail: hans.van.haren@nioz.nl 
1Not member of the ANTARES collaboration, but contributor to this paper. 
2Also at University of Leiden, the Netherlands 
3On leave at DESY, Platanenallee 6, D-15738 Zeuthen, Germany 
4Now at at the University of California, Irvine, 92697, CA, USA. 
 
 



 3

ABSTRACT 

An Acoustic Doppler Current Profiler (ADCP) was moored at the deep-sea site of the 

ANTARES neutrino telescope near Toulon, France, thus providing a unique opportunity to 

compare high-resolution acoustic and optical observations between 70 and 170 m above the 

sea bed at 2475 m. The ADCP measured downward vertical currents of magnitudes up to 0.03 

m s-1 in late winter and early spring 2006. In the same period, observations were made of 

enhanced levels of acoustic reflection, interpreted as suspended particles including 

zooplankton, by a factor of about 10 and of horizontal currents reaching 0.35 m s-1. These 

observations coincided with high light levels detected by the telescope, interpreted as 

increased bioluminescence. During winter 2006 deep dense-water formation occurred in the 

Ligurian subbasin, thus providing a possible explanation for these observations. However, the 

10-20 days quasi-periodic episodes of high levels of acoustic reflection, light and large 

vertical currents continuing into the summer are not direct evidence of this process. It is 

hypothesized that the main process allowing for suspended material to be moved vertically 

later in the year is local advection, linked with topographic boundary current instabilities 

along the rim of the ‘Northern Current’.  
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1. Introduction 

In the past, a large effort has been put in oceanographic studies on mesoscale phenomena 

like eddies, meandering boundary currents and their effects on the distribution of marine life 

with abundance along their rims (fronts). Most of these studies focused on the euphotic zone, 

say the upper few 100 m below the surface. Great help proved satellite imagery of the sea 

surface in addition to more classic observations from ships. Partly due to logistic problems, 

less is known about the deep-sea, below 1000 m. Although it is known that Gulf Stream 

eddies have large vertical extent >2000 m (Richardson, 1983), no direct observations have 

been made of vertical motions linking abundant near-surface waters with the deep. Recently, 

Rivas et al. (2009) presented partially such [rare] observations for Gulf of Mexico eddies. If 

such link exists, it will locally facilitate transport of plankton and food supply to deep-sea 

organisms living in the dark, where most fauna use light for communication and predation.  

In general, bioluminescent organisms are progressively less abundant at greater depths 

(Vinogradov, 1961; Bradner, 1987; Priede et al., 2006; Heger et al., 2008). Faunal groups that 

produce bioluminescence in the deep sea are fish and zooplankton (Haddock et al., 2010). 

Their light is produced by themselves and rarely by symbioting bacteria. In the Mediterranean 

Sea their presence is a factor of about 10 less abundant than, e.g., parts of the North-Atlantic 

Ocean, between 1500 and 2500 m and across the Mediterranean values may differ by more 

than a factor of 10 as a function of time, location and depth (Priede et al., 2008). Most of 

previous bioluminescence observations come from vertical profiling instruments at different 

locations. Time series observations from a single location are rare mainly because of power 

supply issues in self-contained instrumentation. An opportunity for such time series 

observations is offered by astrophysicists who recently built the ANTARES detector, one of 

few deep-sea cabled networks.  

The ANTARES site is off the French Provençal coast in the north-western Mediterranean 

Sea, about 10 km from the nearly flat base of the steep continental slope (Fig. 1). It is at the 

north-eastern edge of the Provençal subbasin (far north-west of Ligurian subbasin). A 40 km 
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long electro-optical cable provides power and the connection for data transmission to and 

from a shore station (Aguilar et al., 2007).  

The ANTARES detector (Ageron et al., 2010) is designed to search for high-energy 

neutrinos coming from galactic and extra-galactic astrophysical sources for a period of at least 

15 years. It is at great depths, mainly to have the water act as a shield for sunlight and cosmic 

rays, and also to avoid large levels of bioluminescence. The detection principle is based on 

the collection of Cherenkov photons induced by relativistic charged particles, produced in 

neutrino interactions, using a 3D-array of about 900 Photo-Multiplier Tubes (PMTs) sensitive 

to single photo-electrons (Amram et al., 2002). Each PMT together with electronics is 

integrated in a pressure resistant glass sphere of 17 inch diameter to form an Optical Module 

(OM). The OMs are mounted on 12 mooring lines and are positioned between about 1900 and 

2400 m vertically and 60-70 m apart horizontally. An extra line is used for seismic and 

oceanographic observations including those on water motions, marine biology and 

sedimentology. Thus, for long periods of time processes may be studied at a site just off a 

continental slope into the abyss of a subbasin. 

One of potential processes is the Northern Current (NC; Millot, 1999), which flows 

counter-clockwise along the boundary slopes of the Ligurian and Provençal subbasins and 

which is driven by buoyancy forces affected by rotation (Crépon et al., 1982; 1989). It is a 

few tens of km wide and it shows a marked seasonal variability. During summertime the NC 

is wider (up to ~50 km) and shallower (150-200 m at the slope). During wintertime the NC is 

narrower (20-30 km) and deeper (200-400 m), and its mesoscale activity increases, generating 

meanders mostly with a 10-20 day periodicity (e.g., Albérola et al. 1995) and, generally in 

January, intense mesoscale activity can reach from surface to bottom. This intensification is 

due to dense water formation in the subbasin (Crépon et al., 1982; 1989). Then, from the NC-

rim and into the center of the subbasins vigorous horizontal motions, with speeds up to 0.5 m 

s-1 compared to O(10-2) m s-1 in summer (Taupier-Letage and Millot, 1986), may become 

vertically uniform barotropic (Albérola et al. 1995). These are associated with enhanced near-
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bottom particle fluxes (Martin et al., 2010). As the rim of the NC is meandering, it skims over 

the ANTARES site so that the detector lies alternately under NC- or under offshore-influence.  

Along the NC-rim near the surface, enhanced levels of near-surface phytoplankton grow in 

spring and may be transported downward along the front, although evidence was so far 

limited to the upper few 100 m (e.g., Boucher et al., 1987; Gorsky et al., 2002) and more 

recently to 1000 m (Stemmann et al., 2008). Molinero et al. (2008) and Craig et al. (2010) 

reported a correlation between surface phytoplankton concentration and the density of 

bioluminescent (zooplankton) organisms, which are thus also abundant along the NC-rim. 

More in general, numerous near-surface studies showed aggregation of zooplankton along the 

edges of eddies and fronts, e.g., Piontkovski et al. (1995), Hernández-León et al. (2001), Jiang 

et al. (2007), Labat et al. (2009). Presently unknown is the influence of the NC in transporting 

downward suspended materials including zooplankton to great depths. So far, no direct 

observations have been reported of the effects of such vertical currents on deep biomass, but a 

patch of elevated bioluminescence was observed at about 1000 m underneath a mesoscale 

eddy in the Atlantic (Heger et al., 2008). 

In the western basin of the Mediterranean, there may be two physical processes that are 

characterized by asymmetric, larger down- than upward, w having Ơ(10-2 m s-1) surface-to-

bottom magnitudes (Millot, 1999). In these processes, the larger magnitude downward 

motions are found in areas of smaller horizontal extent than those of the upward motions. 

Both can affect the ANTARES site:  

i) deep dense water convection due to evaporation and cooling of near-surface 

waters mixing with intermediate waters below, which is predominantly known to 

occur off the shelf of the Gulf of Lions (GoL), in the Provençal subbasin, 

‘MEDOC’-area, and in the Ligurian subbasin (e.g., Voorhis and Webb, 1970; 

Gascard, 1973; Schott and Leaman, 1991). Schroeder et al. (2008) and Smith et al. 

(2008) suggested a shift of larger convection from the former to the latter subbasin 

in 2006. This process is typified by O(102-103 m) horizontal radius for downward 
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motion “plumes” and 10-100 times larger upward motion areas (Marshall and 

Schott, 1999).   

ii) Advection due to horizontal density gradient, frontal zones, such as confirmed in 

the upper 1000 m off Nice (Stemmann et al., 2008), and mesoscale eddies, such as 

occur in the Algerian subbasin (van Haren et al., 2006). This process is typified by 

strong downward currents in an O(103 m) wide rim around eddies on the 

perimeter, O(105 m) radius, and upward motions in the rest of the area (van Haren 

et al., 2006).  

Here, we report on Acoustic Doppler Current Profiler ADCP-data (RDI, 1992) measuring 

temperature, echo intensity and current in all three Cartesian components: East-West (u), 

North-South (v), vertical (w), focussing on episodic relatively large downward w. The echo 

intensity data are interpreted qualitatively as suspended material, mainly zooplankton. These 

data are compared with certain observations from PMTs, which are related to 

bioluminescence. The combination of these data sets is unique and the aim is to better 

understand the processes governing variability in the deep-sea plankton abundance. 

 

2. Materials and methods 

In spring 2005, the ANTARES Collaboration deployed and operated a so-called Mini 

Instrumentation Line equipped with Optical Modules (MILOM) at the site 42°48′N, 06°10′E, 

2475 m water depth (Aguilar et al., 2006) (Fig. 1). In March 2006 the first detector line 

became operational (Ageron et al., 2009). It was placed 78 m from MILOM. Optical data 

from both lines are used here. The MILOM consisted of an instrumented releasable anchor 

and of three storeys located at 100, 117 and 169 m above the sea bed. It was equipped with 

four OMs: a triplet of OMs on the middle storey and a single OM on the upper storey. The 

line is thus quite like a typical oceanographic mooring, except for the power and data 

connection to shore. The shoreward data-transport was frequently interrupted in the first half 

of 2006, but was fine afterwards (Fig. 2). 
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A downward-looking 300 kHz, four-beam Teledyne RDI-ADCP was mounted on the 

upper storey of MILOM. The ADCP sampled data-ensembles in 50 vertical bins of 2.5 m 

every 10 minutes. In this apparatus the beam slant is 20° to the vertical. This leads to current 

estimates that are averages over horizontal beam spreads of 3-80 m as a function of the 

vertical range. It also implies that horizontal currents are approximately four times less 

accurately determined than vertical currents. This is not a problem for determining large-scale 

ocean currents, which have an aspect ratio of about 1:1000. As a result, attention is given 

below on the adequate estimating of vertical currents, even though the aspect ratio becomes 

1:10 or larger for internal wave motions.   

As the ADCP operates a 4th beam that is redundant for 3-axis current measurements, it 

offers an extra ‘error’ velocity (e) that is composed of the difference between two w-values 

estimated from the independent beam pairs (RDI, 1992). Due to this definition e is valid as an 

error estimate for w in all coordinate frames. Thus, reasonable estimates are obtained for 

errors in w that include horizontal current inhomogeneities over the beam spread (van Haren 

et al., 1994). 

ADCP data are corrected internally by the instrument, using tilt (θ) and heading attitude 

sensors. Such correction is needed every time-step as the instrument only measures Doppler-

shifts (“currents”) in the direction of its beams, and the decomposition into [u, v, w] needs to 

be computed correctly, also for moving instruments. If the attitude sensors are not properly 

calibrated they can cause bias, especially of [u, v] into w. The observed tilt (Fig. 2), more 

specifically tan(θ), shows a significant linear relationship with the current amplitude squared 

|U|2=u2+v2 (not shown). This confirms a mooring under current drag (e.g., van Haren, 1996). 

As will be demonstrated in Section 3, although w and -|U| occasionally have similar temporal 

variations, differences do occur so that the overall coherence is not significant (not shown).  

As the tilt sensors have an accuracy of 0.5°, substantial bias in w is unlikely to happen. A 

number of independent checks have been performed to further verify this condition.  
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1) The 0.5° tilt accuracy may in worst case cause a bias of -3×10-3 m s-1. Such w-value 

has been observed using upward looking 75 kHz ADCPs (Schott et al., 1991; van 

Haren et al., 2006). Part of this w can be attributed to sinking materials, although 

their typical downward speeds are commonly -1×10-3 m s-1 or less (Passow, 1991; 

Lampitt et al., 1993). In the present 300 kHz downward looking ADCP data a mean 

of w = 0 is found when currents are weak, e.g. days 146-147, 253-256, 321-323 (see 

Section 3). 

2) The observed total tilt is 2-3° and nearly constant with time (Fig. 2a). Supposing this 

value is completely biased, and accounting for the slow rotation of the ADCP (Fig. 

2b), it is possible to compute an artificial w″ (Fig. 2c; red curve) as influence of 

horizontal current components [u, v]. It is clearly visible that this w″ has smaller 

amplitude than the measured w, much smaller standard deviation and frequently has 

an opposite sign.  

3) A more robust verification comes from considering inertial motions which are 

particularly strong in the area and which would result in artificial w″ being in-phase 

with u or v. However, as observed in Fig. 2c the much smaller standard deviation 

comprising internal waves including inertial motions is poorly represented in w″ and 

the coherence between w and u, v or |U| at this and other frequencies was not 

statistically significant (not shown). This implies no relevant correspondence 

between horizontal and vertical motions. As an example, relatively weak horizontal 

motions other than inertial can be considered (Fig. 3a). When u, v, |U| are near-zero, 

large negative w may occur (e.g., day 361.9) as well as near-zero w (e.g., day 

365.5). This happens occasionally at the larger time scale of a day or more, as well 

as at the inertial and shorter time scales. |U| and w are seen in-phase as well as out-

of-phase in this short record, which cannot be attributed to tilt-bias as then they 

should always be in-phase. It is noted that vertical component inertial motions are 
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not negligible in near-homogeneous waters and have been observed before in the 

Provençal subbasin further to the south (van Haren and Millot, 2005). 

4) Vertical inertial motions seem mostly uniform over the vertical ADCP-range, as has 

been observed previously (van Haren and Millot, 2005) in near-homogeneous waters 

where the buoyancy frequency N is of the same order of magnitude as the inertial 

frequency f. Such weak stratification is commonly found in CTD-profiles from the 

basin, but small variations in the vertical do occur (Schroeder et al., 2008; van Haren 

and Millot, 2009). For instance, when near-bottom stratification (N equaling a few 

times f) passes the mooring, associated vertical motions have negative maxima well 

away from the ADCP (Fig. 3b). This also cannot be explained from bias errors in 

tilt-sensor data, which would affect w equally at all depth levels. 

As ADCPs rely completely on the reflection of sound on ‘particles’ in the water, larger 

than about 0.003 m at 300 kHz (RDI, 1992), they sample variations in these reflections as 

‘echo intensity’ (I). Part of the I-variation with depth is the inevitable acoustic energy loss in 

water due to beam spread and chemical reactions (RDI, 1992). A simple method to correct for 

sound loss is the computation of a ‘relative echo intensity’, dI=I-Imin, by subtracting the 

minimum Imin over the entire period of time from the original signal at each depth. When the 

acoustic signal drops below noise level due to low scatter amounts, dI = 0. A single-frequency 

instrument cannot be used to distinguish the cause of variations in dI with time. The origin of 

variations ranges from changes in shape and species to number of particles. Most often 

however, variations in dI imply variations in the number of particles passing through the 

beams. A 300-kHz ADCP is sensitive to particles like large suspended flocs of material and 

especially zooplankton that have sizes >10-3 m, or larger animals. It is not sensitive to bacteria 

and phytoplankton, which have typical sizes O(10-5-10-4 m) or less. 

 

3. Results 

In March 2006, the PMTs counting rates, which at low levels are mainly due to 40K-decay 

and to bioluminescent bacteria, suddenly increased by a factor of 10 or more (Fig. 4a). Low 
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levels are observed before day 67 and after day 170, except for moderately intense short 

episodes. Sudden large increases are apparent for 30 days after day 67 and high levels are 

maintained until about day 170. Similar observations were made using different PMTs on 

MILOM and line 1 (Ageron et al., 2009). An increase in counting rate is usually attributed to 

higher levels of bioluminescence. It is noted that bacterial light is a steady glow and that 

faunal bioluminescence is characterized by non steady state flashes, e.g., when animals 

collide with a structure (Priede et al., 2008; Haddock et al., 2010). A larger current magnitude 

provides more energetic collisions and expected higher rates of bioluminescence, as has been 

observed in an average sense at ANTARES (Brunner, 2011).  

 

3.1. Yearlong overview of strong variations in relative echo intensity, optics and currents  

The ADCP’s dI suddenly increased by a factor of about 10 on day 68 (Fig. 4b). Relatively 

large acoustic reflections occurred until day 190, and episodically later in the year. Larger dI 

coincide generally with increased PMT counting rates. However, it is noted that optical and 

acoustic data may imply variations of different origin. The former are sensitive to variations 

due to distributed light sources, such as luminescent bacteria or zooplankton species. The 

latter is mostly sensitive to echos due to accumulation of zooplankton and higher order 

species, not necessarily light-emitting objects. Associated with increases in dI are: large 

downward w (Fig. 4d) and generally increased horizontal currents, although not necessarily 

always, e.g., days 85-100 (Fig. 4c). Aside from the period between days 70 and 140 of 

strongly enhanced dI, large negative w periods of typically 10-30 days of similar but 

somewhat weaker absolute values are observed later in the year as well, e.g., days 220-230 

and 285-300. Variations with time may be more clearly seen in series from a particular depth, 

e.g., 2320 m (Fig. 5). Large negative w and larger dI and |U| are occasionally accompanied by 

increases in temperature, but the correlation is ambiguous despite the tendency of large |U| 

with small T (Fig. 5a). Coherence is not statistically significant between w and |U|, implying 

w to have partially independent sources. The measurement of e shows that it has a mean of 

about zero and standard deviation of noise of 0.002 m s-1, commensurate with the 
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manufacturer’s error estimate in w for given ensemble averaging (Fig. 5c). As a result, current 

inhomogeneities over the beam spread are not causing any negative bias in w and its apparent 

noise is mostly due to high-frequency internal waves and small-scale convection. 

 

3.2. Details of large downward motion and associated variations  

First focusing on winter-spring of 2006, it is seen that variations in negative w and 

increased optical measurements, dI and |U| also occur at shorter periods of 1-10 days (Fig. 5). 

From day 70 to 80, the mean downward motion was about 0.01 m s-1 and occasionally 

exceeded 0.025 m s-1 (Fig. 2), i.e. 2000 m day-1. The w are best followed by -dI, whilst the 

optics and |U| show a slightly better correspondence. As for the lack of statistically significant 

coherence found here, it is noted that acoustic reflections and optical measurements are non-

conservative properties, which not only depend on (advective) currents but also on particle 

sizes and biological influences. The w contains a lot of high-frequency variations that are not 

noise, but internal waves near the buoyancy period of a few hours. It is noted that these values 

of w are measured relatively close to the sea bottom, although still well above the frictional 

bottom boundary layer.  

Such large downward motions cannot be associated with sinking particles like heavy 

diatoms and faecal pellets, whose speeds are 1-2 orders of magnitude smaller (Passow, 1991; 

Lampitt et al., 1993). They also cannot be associated with zooplankton migration. 

Zooplankton moves at such speeds, but down and up, in various cycles including a diurnal 

and a seasonal cycle, in the latter going up in spring (van Haren, 2007). 

 

3.3. Details of variations at time-scales of meanders, eddies, jets   

Similar, although less intense, w-variations are observed later in the record (Fig. 6). The 

optical measurements episodically exceed 300 kHz, roughly with the same 20±10 days 

periodicity as enhanced w, dI and |U|. Due to warming from May onwards the stratification 

prevents any deep convection, so that this process definitely cannot explain episodic large 

summer-autumnal downward currents. Similarly, cascading events in nearby canyons 
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transporting debris down are not expected to occur at a 10-20 days periodicity. Recent 

sediment and [horizontal] current research (Khripounoff et al., 2009) showed that in the Var-

canyon, the nearest canyon upstream of ANTARES, a distinction occurred between 

resuspension higher-up in the canyon and near its foot. The deep resuspension was mainly 

attributed to the “regularly” meandering NC influence rather than to flash floods. Locally, in 

the weakly stratified deep layers [slanted] convection may persist throughout the year 

associated with sub-mesoscale eddies (Testor and Gascard, 2006) and/or near-inertial internal 

waves (van Haren and Millot, 2009). However, such processes are not known for 20-day 

quasi-periodicity.    

Progressive Vector Diagrams (PVDs) constructed via time integration of horizontal 

particle velocities using the deep ADCP data show predominant westward ‘displacement’ 

between days 69 and 79, preceded by northward and followed by southward displacements 

(Fig. 7a). Although ambiguous, this could be interpreted as due to the passage of a mesoscale 

meander or clockwise eddy passing with its core between the ANTARES site and the coast 

during westward propagation with the prevailing NC, such as observed previously (Crépon et 

al., 1982).  

Generally, the baroclinic unstable, meandering NC passes inshore of the ANTARES site as 

is observed from sea surface satellite images (e.g., Fig. 7b). Particularly on day 68 we observe 

a strong baroclinic instability forming a vortex pair or dipole just to the East of the 

ANTARES site (Fig. 7b), with a seaward central jet. This is visualized in the large change in 

surface chlorophyll (‘colour’). The dimensions are 40x80 km, about twice the amplitude and 

wavelength of typical NC-instabilities that are visible to the West of the dipole and which 

occur at 10-20 day intervals. The size of the dipole compares well with previous observations 

affecting surface plankton in the Atlantic Ocean (Gower et al., 1980). Many good satellite 

images could not be obtained over the following days as a result of cloudiness, however the 

boundary in surface chlorophyll seemed more or less stationary over the ANTARES site for 

about 10 days. While the dipole clearly developed from an instability of the NC, images show 
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intense mesoscale eddy activity in the central basin that occasionally come close to the NC at 

the ANTARES site (Fig. 7c).  

We speculate that one can relate sea surface satellite images with deep-sea ADCP 

observations, as seems justifiable for quasi-barotropic Gulf Stream and Algerian mesoscale 

eddies, with >2000 m vertical extent (Richardson, 1983; Millot et al., 1997; van Haren et al., 

2006), and also for sub-mesoscale eddies with >1000 m vertical uniformity (Testor and 

Gascard, 2006). For the presumed more baroclinic NC, the present observations compare to 

some extent with models on dipoles, which have near-zero phase speed due to their 

interaction with the sheared current deep below (Griffiths and Pearce, 1985; Crépon et al., 

1989). As a result, a particular area may receive persistent vertical flux of material during the 

lifetime of a jet or mesoscale meander or eddy (we cannot distinguish between them from an 

ADCP-record). Later in the ADCP-record we do find indication for more meanders or eddies, 

associated with episodes of relatively large downward vertical currents. The PVDs show 

eddies of a clockwise nature, but it is noted that eddy interpretation from PVD can be 

ambiguous when no other information is available.  

 

4. Discussion 

The beginning of 2006 was characterized by particularly strong convection and deep dense 

water formation observed in the Provençal MEDOC-area, in particular in the Ligurian-

subbasin during two major periods, January and March/April, and which lasted well into 

spring (Schroeder et al., 2008; Smith et al., 2008). However, it is unlikely that the present 

large current, acoustic and optical variations, observed over the course of a year, are 

exclusively associated with dense water formation processes. In the first instance, temperature 

increases are considered evidence of dense water formation in the Ligurian subbasin 

(Schroeder et al., 2008; Smith et al., 2008). However in this study downward motions show 

ambiguous correspondence with temperature increases. Secondly, episodic downward 

motions were observed throughout the year, not only in winter and early spring.  
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In contrast, the NC is a permanent, non-random current, as is its meandering activity, 

although modulated by seasonal variation and (re)inforced by dense water formation (Crépon 

et al., 1989). The meandering NC-rim is a good candidate to cause temporal variations in 

current, acoustic reflection and optical measurements at the ANTARES site periodically all 

year long, when forced to great depths. 

As a result, it is hypothesized that active mesoscale motions could cause the observed 

large variations in acoustic reflection, optical measurements, horizontal and downward 

motions. As such motions are generated via instabilities of the coastal-continental topographic 

NC-system in response to atmospheric forcing above the deep open subbasin, they follow 

periods of exceptional dense water formation and last for months. 

The present acoustical observations support the optical observations of the ANTARES 

array that large amounts of particles are transported downward from higher up, commonly 

with enlarged horizontal motions thus spiraling advectively down, resulting in episodically 

high counting rates in the PMTs. As both acoustics and optical sensors respond more or less 

during the same episodes and because acoustics are insensitive to bacteria, an important 

contribution to bioluminescence can be ascribed to zooplankton, or, perhaps though unlikely, 

to large suspended material like faecal pellets (Andrews et al., 1984) carrying luminescent 

bacteria. These observations provide an indication that mesoscale meanders or eddies, 

generated by unstable currents, may create episodic increases in the flux of fresh organic 

material to the deep sea. 
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Figure 1. ANTARES site (red star) roughly located on the northern edge of the border 

between the Ligurian (L) and Provençal (P) subbasins, western basin Mediterranean Sea. 

Indications are given of the rim of the Northern Current NC (solid line) and areas of 

dense-water formation (dw). Isobaths every 500 m between [-500, -2500]m.  

 

Figure 2. ADCP’s tilt, heading and vertical current comparison. The time convention is 

January 1, 12.00 UTC = day 0.5, 2006. a. Pitch (blue), roll (black) and total tilt (green). 

b. Compass-heading. c. Raw vertical current observed at 15 m below ADCP (blue), in 

comparison with artificial w″ computed from horizontal currents at the same depth 

using tilt-sensor data (red). 

 

Figure 3. a. Detail comparison between horizontal current components (blue: u; black: v; 

green: -|U|) and vertical current (red: scale to right) measured at 30 m below the ADCP 

in winter 2006/2007. b. Depth-time series of vertical motions, which show largest 

amplitudes (most negative values) at about 70 m below the ADCP, in this example. 

Days in 2007 are +365. 

 

Figure 4. a. Optical counting rate observed 50 m below the ADCP at MILOM (blue) and on 

Line 1 (red) as a function of time. b.-d. Raw MILOM-ADCP data, time-depth series. In 

all panels the vertical white lines indicate absence of data. The two horizontal lines at 

2350 and 2365 m are direct sound reflections from two storeys below the ADCP. b. 

Relative echo amplitude from a beam, limited to [0, 12] dB. c. Current amplitude, 

between [0, 0.2] m s-1. d. Vertical current, between [-0.01, 0.01] m s-1. In c., d. useful 

data are available down to about 2390 m, and to about 2420 m between days 70 and 

145 when echos are large. At depths further from the ADCP than this the signal to 

noise ratio approached one due to radial sound loss and lack of scatterers. This results 

in acoustic levels at minimum constant noise level Imin(z) and hence dI = 0 (dark-blue).  
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Figure 5. Late winter-spring 2006 time series. Applied smoothing is using a 20-points 

running mean. a. Horizontal current amplitude at 2320 m (black; smoothed data) and 

temperature (green; smoothed) measured at the ADCP. b. Relative sound-echo 

amplitude (black; smoothed) and PMT baseline data from 2350 m (red; raw data). c. 

Vertical current (black: smoothed) and error velocity (green: smoothed). 

 

Figure 6. As Fig. 5, but for summer-autumn 2006 (early winter 2007) time series. 

 

Figure 7. a. Progressive Vector Diagram of integrated Eulerian horizontal currents observed 

at 2320 m. In black the total 2006-time series that start at (0,0), in colours portions 

between the days indicated. b. Satellite image of false-coloured near-surface 

chlorophyll-a on day 68. The strongly meandering rim of NC is approximately 

delineated by the sharp change from light- dark-blue near the coast. c. As b., but for 

near-surface suspended particulate matter on day 87. Here, the darker-blue colours are 

near the coast, but as before the strong colour contrast delineates the meandering NC-

rim. In b. and c. the ANTARES site is marked by a cross. Note the images are used 

qualitatively for pattern recognition. 


















