58 research outputs found

    Clonal chromosomal mosaicism and loss of chromosome Y in elderly men increase vulnerability for SARS-CoV-2

    Full text link
    The pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2, COVID-19) had an estimated overall case fatality ratio of 1.38% (pre-vaccination), being 53% higher in males and increasing exponentially with age. Among 9578 individuals diagnosed with COVID-19 in the SCOURGE study, we found 133 cases (1.42%) with detectable clonal mosaicism for chromosome alterations (mCA) and 226 males (5.08%) with acquired loss of chromosome Y (LOY). Individuals with clonal mosaic events (mCA and/or LOY) showed a 54% increase in the risk of COVID-19 lethality. LOY is associated with transcriptomic biomarkers of immune dysfunction, pro-coagulation activity and cardiovascular risk. Interferon-induced genes involved in the initial immune response to SARS-CoV-2 are also down-regulated in LOY. Thus, mCA and LOY underlie at least part of the sex-biased severity and mortality of COVID-19 in aging patients. Given its potential therapeutic and prognostic relevance, evaluation of clonal mosaicism should be implemented as biomarker of COVID-19 severity in elderly people. Among 9578 individuals diagnosed with COVID-19 in the SCOURGE study, individuals with clonal mosaic events (clonal mosaicism for chromosome alterations and/or loss of chromosome Y) showed an increased risk of COVID-19 lethality

    Impact of COVID-19 on cardiovascular testing in the United States versus the rest of the world

    Get PDF
    Objectives: This study sought to quantify and compare the decline in volumes of cardiovascular procedures between the United States and non-US institutions during the early phase of the coronavirus disease-2019 (COVID-19) pandemic. Background: The COVID-19 pandemic has disrupted the care of many non-COVID-19 illnesses. Reductions in diagnostic cardiovascular testing around the world have led to concerns over the implications of reduced testing for cardiovascular disease (CVD) morbidity and mortality. Methods: Data were submitted to the INCAPS-COVID (International Atomic Energy Agency Non-Invasive Cardiology Protocols Study of COVID-19), a multinational registry comprising 909 institutions in 108 countries (including 155 facilities in 40 U.S. states), assessing the impact of the COVID-19 pandemic on volumes of diagnostic cardiovascular procedures. Data were obtained for April 2020 and compared with volumes of baseline procedures from March 2019. We compared laboratory characteristics, practices, and procedure volumes between U.S. and non-U.S. facilities and between U.S. geographic regions and identified factors associated with volume reduction in the United States. Results: Reductions in the volumes of procedures in the United States were similar to those in non-U.S. facilities (68% vs. 63%, respectively; p = 0.237), although U.S. facilities reported greater reductions in invasive coronary angiography (69% vs. 53%, respectively; p < 0.001). Significantly more U.S. facilities reported increased use of telehealth and patient screening measures than non-U.S. facilities, such as temperature checks, symptom screenings, and COVID-19 testing. Reductions in volumes of procedures differed between U.S. regions, with larger declines observed in the Northeast (76%) and Midwest (74%) than in the South (62%) and West (44%). Prevalence of COVID-19, staff redeployments, outpatient centers, and urban centers were associated with greater reductions in volume in U.S. facilities in a multivariable analysis. Conclusions: We observed marked reductions in U.S. cardiovascular testing in the early phase of the pandemic and significant variability between U.S. regions. The association between reductions of volumes and COVID-19 prevalence in the United States highlighted the need for proactive efforts to maintain access to cardiovascular testing in areas most affected by outbreaks of COVID-19 infection

    Heterogeneous contributions of change in population distribution of body mass index to change in obesity and underweight NCD Risk Factor Collaboration (NCD-RisC)

    Get PDF
    From 1985 to 2016, the prevalence of underweight decreased, and that of obesity and severe obesity increased, in most regions, with significant variation in the magnitude of these changes across regions. We investigated how much change in mean body mass index (BMI) explains changes in the prevalence of underweight, obesity, and severe obesity in different regions using data from 2896 population-based studies with 187 million participants. Changes in the prevalence of underweight and total obesity, and to a lesser extent severe obesity, are largely driven by shifts in the distribution of BMI, with smaller contributions from changes in the shape of the distribution. In East and Southeast Asia and sub-Saharan Africa, the underweight tail of the BMI distribution was left behind as the distribution shifted. There is a need for policies that address all forms of malnutrition by making healthy foods accessible and affordable, while restricting unhealthy foods through fiscal and regulatory restrictions

    Technology usage as a vehicle for information and approximation with society

    Get PDF
    Introduction: Confronting the COVID-19 pandemic involves actions in the scope of information, especially in combating false content disseminated by social media. In this sense, medical students, including those belonging to a Trauma and Emergency Academic League, have mobilized to create a media campaign in order to disseminate information about SARS-CoV-2’s aspects to the population. The objective of this work was to report the contribution of the league members to the campaign developed to disseminate reliable scientific content based on simple and objective language about COVID-19. Methodology: A campaign was organized by second to the sixth-year medical students, members of 15 university academic leagues, with the aim to use social media as an information tool for health educational practice. Results: The students from the Trauma and Emergency Academic League made a total of 6 posts on Instagram, using the league’s and the campaign’s accounts. Those posts obtained a total of 1983 views and had the purposed of reaching the general population. The information provided was about self-medication and its risks or benefits, preventive measures against COVID-19 and how to make and use homemade masks. Among the public that accessed the campaign’s profile on Instagram, 70% were women and 80% were between 18 and 34 years old. Discussion: With the reported activities, league students described acquiring knowledge about COVID-19, in addition to teamwork experience and contribution to the fight against the pandemic through the materials production and its dissemination to the population. It allowed innovation in learning and in the access to knowledge, as the pandemic imposed new health-related educational challenges. However, it is noticed that there is a limitation in the posts scope, as they have mostly reached a specific age group. Conclusion: The proper internet usage is essential to combat misleading information in the pandemic context. Therefore, the online dissemination of reliable information with the intent to reach a larger audience indicates academic commitment, especially to social responsibility

    Duration of post-vaccination immunity against yellow fever in adults

    No full text
    Submitted by Nuzia Santos ([email protected]) on 2015-06-22T17:37:43Z No. of bitstreams: 1 2014_152.pdf: 756403 bytes, checksum: c18d98237e29e19e785cf895a2a68ddc (MD5)Approved for entry into archive by Nuzia Santos ([email protected]) on 2015-06-22T17:37:52Z (GMT) No. of bitstreams: 1 2014_152.pdf: 756403 bytes, checksum: c18d98237e29e19e785cf895a2a68ddc (MD5)Approved for entry into archive by Nuzia Santos ([email protected]) on 2015-06-22T17:58:36Z (GMT) No. of bitstreams: 1 2014_152.pdf: 756403 bytes, checksum: c18d98237e29e19e785cf895a2a68ddc (MD5)Made available in DSpace on 2015-06-22T17:58:36Z (GMT). No. of bitstreams: 1 2014_152.pdf: 756403 bytes, checksum: c18d98237e29e19e785cf895a2a68ddc (MD5) Previous issue date: 2014Fundação Oswaldo Cruz. Brasilia, DF, BrasilFundação Oswaldo Cruz. Escola Nacional de Saúde Pública. Rio de Janeiro, RJ, BrazilFundação Oswaldo Cruz. Centro de Pesquisa Rene Rachou. Laboratório de Biomarcadores Belo Horizonte, MG, BrasilFundação Oswaldo Cruz. Instituto de Tecnologia em Imunobiológicosde Bio-Manguinhos. Rio de Janeiro, RJ, BrasilFundação Oswaldo Cruz. Instituto de Tecnologia em Imunobiológicos de Bio-Manguinhos. Rio de Janeiro, RJ, BrasilFundação Oswaldo Cruz. Instituto de Tecnologia em Imunobiológicos de Bio-Manguinhos. Rio de Janeiro, RJ, BrasilFundação Oswaldo Cruz. Instituto de Tecnologia em Imunobiológicos de Bio-Manguinhos. Rio de Janeiro, RJ, BrasilFundação Oswaldo Cruz. Instituto de Tecnologia em Imunobiológicos de Bio-Manguinhos. Rio de Janeiro, RJ, BrasilFundação Oswaldo Cruz. Instituto de Tecnologia em Imunobiológicos de Bio-Manguinhos. Rio de Janeiro, RJ, BrasilFundação Oswaldo Cruz. Instituto de Tecnologia em Imunobiológicos de Bio-Manguinhos. Rio de Janeiro, RJ, BrasilFundação Oswaldo Cruz. Instituto de Tecnologia em Imunobiológicos de Bio-Manguinhos. Rio de Janeiro, RJ, BrasilFundação Oswaldo Cruz. Instituto de Tecnologia em Imunobiológicos de Bio-Manguinhos. Rio de Janeiro, RJ, BrasilFundação Oswaldo Cruz. Instituto de Tecnologia em Imunobiológicos de Bio-Manguinhos. Rio de Janeiro, RJ, BrasilFundação Oswaldo Cruz. Instituto de Tecnologia em Imunobiológicos de Bio-Manguinhos. Rio de Janeiro, RJ, BrasilFundação Oswaldo Cruz. Instituto de Tecnologia em Imunobiológicos de Bio-Manguinhos. Rio de Janeiro, RJ, BrasilFundação Oswaldo Cruz. Instituto de Tecnologia em Imunobiológicos de Bio-Manguinhos. Rio de Janeiro, RJ, BrasilFundação Oswaldo Cruz. Instituto de Tecnologia em Imunobiológicos de Bio-Manguinhos. Rio de Janeiro, RJ, BrasilFundação Oswaldo Cruz. Instituto de Tecnologia em Imunobiológicos de Bio-Manguinhos. Rio de Janeiro, RJ, BrasilFundação Oswaldo Cruz. Instituto de Tecnologia em Imunobiológicos de Bio-Manguinhos. Rio de Janeiro, RJ, BrasilFundação Oswaldo Cruz. Instituto de Tecnologia em Imunobiológicos de Bio-Manguinhos. Rio de Janeiro, RJ, BrasilFundação Oswaldo Cruz. Instituto de Tecnologia em Imunobiológicos de Bio-Manguinhos. Rio de Janeiro, RJ, BrasilFundação Oswaldo Cruz. Instituto de Tecnologia em Imunobiológicos de Bio-Manguinhos. Rio de Janeiro, RJ, BrasilFundação Oswaldo Cruz. Instituto de Tecnologia em Imunobiológicos de Bio-Manguinhos. Rio de Janeiro, RJ, BrasilFundação Oswaldo Cruz. Instituto de Tecnologia em Imunobiológicos de Bio-Manguinhos. Rio de Janeiro, RJ, BrasilFundação Oswaldo Cruz. Instituto de Tecnologia em Imunobiológicos de Bio-Manguinhos. Rio de Janeiro, RJ, BrasilFundação Oswaldo Cruz. Instituto de Tecnologia em Imunobiológicos de Bio-Manguinhos. Rio de Janeiro, RJ, BrasilFundação Oswaldo Cruz. Instituto de Tecnologia em Imunobiológicos de Bio-Manguinhos. Rio de Janeiro, RJ, BrasilFundação Oswaldo Cruz. Instituto de Tecnologia em Imunobiológicos de Bio-Manguinhos. Rio de Janeiro, RJ, BrasilFundação Oswaldo Cruz. Instituto de Tecnologia em Imunobiológicos de Bio-Manguinhos. Rio de Janeiro, RJ, BrasilFundação Oswaldo Cruz. Instituto de Tecnologia em Imunobiológicos de Bio-Manguinhos. Rio de Janeiro, RJ, BrasilFundação Oswaldo Cruz. Instituto de Tecnologia em Imunobiológicos de Bio-Manguinhos. Rio de Janeiro, RJ, BrasilFundação Oswaldo Cruz. Instituto de Tecnologia em Imunobiológicos de Bio-Manguinhos. Rio de Janeiro, RJ, BrasilFundação Oswaldo Cruz. Centro de Pesquisa Rene Rachou. Laboratório de Biomarcadores. Belo Horizonte, MG, BrasilFundação Oswaldo Cruz. Centro de Pesquisa Rene Rachou. Laboratório de Biomarcadores. Belo Horizonte, MG, BrasilFundação Oswaldo Cruz. Centro de Pesquisa Rene Rachou. Laboratório de Imunopatologia .Belo Horizonte, MG, BrasilFundação Oswaldo Cruz. Centro de Pesquisa Rene Rachou. Laboratório de Esquistossomose. Belo Horizonte, MG, BrasilFundação Oswaldo Cruz. Centro de Pesquisa Rene Rachou. Laboratório de Biomarcadores. Belo Horizonte, MG, BrasilFundação Oswaldo Cruz. Centro de Pesquisa Rene Rachou. Laboratório de Biomarcadores. Belo Horizonte, MG, BrasilFood and Drug Administration Center for Biologics Evaluation and Research. Bethesda, USA.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratorio de Fla-vivirus. Rio de JaneiroFundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratorio de Fla-vivirus. Rio de JaneiroFundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratorio de Fla-vivirus. Rio de JaneiroInstituto de Biologia do Exército. Rio de Janeiro, RJ, BrasilInstituto de Biologia do Exército. Rio de Janeiro, RJ, BrasilInstituto de Biologia do Exército. Rio de Janeiro, RJ, BrasilInstituto de Biologia do Exército. Rio de Janeiro, RJ, BrasilInstituto de Biologia do Exército. Rio de Janeiro, RJ, BrasilInstituto de Biologia do Exército. Rio de Janeiro, RJ, BrasilMinas Gerais. Secretaria Estadual de Saude. Belo Horizonte, MG, BrasilMinas Gerais. Secretaria Estadual de Saude. Belo Horizonte, MG, BrasilMinas Gerais. Secretaria Estadual de Saude. Belo Horizonte, MG, BrasilMinas Gerais. Secretaria Estadual de Saude. Belo Horizonte, MG, BrasilUniversidade Federal de Alfenas. Alfenas, MG, BrasilUniversidade de Brasília. Faculdade de Medicina. Brasilia, DF, BrasilFundação Oswaldo Cruz. Instituto Evandro Chagas. Ananindeua, PA, BrasilINTRODUCTION: Available scientific evidence to recommend or to advise against booster doses of yellow fever vaccine (YFV) is inconclusive. A study to estimate the seropositivity rate and geometric mean titres (GMT) of adults with varied times of vaccination was aimed to provide elements to revise the need and the timing of revaccination. METHODS: Adults from the cities of Rio de Janeiro and Alfenas located in non-endemic areas in the Southeast of Brazil, who had one dose of YFV, were tested for YF neutralising antibodies and dengue IgG. Time (in years) since vaccination was based on immunisation cards and other reliable records. RESULTS: From 2011 to 2012 we recruited 691 subjects (73% males), aged 18-83 years. Time since vaccination ranged from 30 days to 18 years. Seropositivity rates (95%C.I.) and GMT (International Units/mL; 95%C.I.) decreased with time since vaccination: 93% (88-96%), 8.8 (7.0-10.9) IU/mL for newly vaccinated; 94% (88-97), 3.0 (2.5-3.6) IU/mL after 1-4 years; 83% (74-90), 2.2 (1.7-2.8) IU/mL after 5-9 years; 76% (68-83), 1.7 (1.4-2.0) IU/mL after 10-11 years; and 85% (80-90), 2.1 (1.7-2.5) IU/mL after 12 years or more. YF seropositivity rates were not affected by previous dengue infection. CONCLUSIONS:Eventhough serological correlates of protection for yellow fever are unknown, seronegativity in vaccinated subjects may indicate primary immunisation failure, or waning of immunity to levels below the protection threshold. Immunogenicity of YFV under routine conditions of immunisation services is likely to be lower than in controlled studies. Moreover, infants and toddlers, who comprise the main target group in YF endemic regions, and populations with high HIV infection rates, respond to YFV with lower antibody levels. In those settings one booster dose, preferably sooner than currently recommended, seems to be necessary to ensure longer protection for all vaccinee

    Management practices for postdural puncture headache in obstetrics : a prospective, international, cohort study

    No full text
    Background: Accidental dural puncture is an uncommon complication of epidural analgesia and can cause postdural puncture headache (PDPH). We aimed to describe management practices and outcomes after PDPH treated by epidural blood patch (EBP) or no EBP. Methods: Following ethics committee approval, patients who developed PDPH after accidental dural puncture were recruited from participating countries and divided into two groups, those receiving EBP or no EBP. Data registered included patient and procedure characteristics, headache symptoms and intensity, management practices, and complications. Follow-up was at 3 months. Results: A total of 1001 patients from 24 countries were included, of which 647 (64.6%) received an EBP and 354 (35.4%) did not receive an EBP (no-EBP). Higher initial headache intensity was associated with greater use of EBP, odds ratio 1.29 (95% confidence interval 1.19-1.41) per pain intensity unit increase. Headache intensity declined sharply at 4 h after EBP and 127 (19.3%) patients received a second EBP. On average, no or mild headache (numeric rating score <= 3) was observed 7 days after diagnosis. Intracranial bleeding was diagnosed in three patients (0.46%), and backache, headache, and analgesic use were more common at 3 months in the EBP group. Conclusions: Management practices vary between countries, but EBP was more often used in patients with greater initial headache intensity. EBP reduced headache intensity quickly, but about 20% of patients needed a second EBP. After 7 days, most patients had no or mild headache. Backache, headache, and analgesic use were more common at 3 months in patients receiving an EBP

    Management practices for postdural puncture headache in obstetrics: a prospective, international, cohort study

    No full text
    © 2020 British Journal of AnaesthesiaBackground: Accidental dural puncture is an uncommon complication of epidural analgesia and can cause postdural puncture headache (PDPH). We aimed to describe management practices and outcomes after PDPH treated by epidural blood patch (EBP) or no EBP. Methods: Following ethics committee approval, patients who developed PDPH after accidental dural puncture were recruited from participating countries and divided into two groups, those receiving EBP or no EBP. Data registered included patient and procedure characteristics, headache symptoms and intensity, management practices, and complications. Follow-up was at 3 months. Results: A total of 1001 patients from 24 countries were included, of which 647 (64.6%) received an EBP and 354 (35.4%) did not receive an EBP (no-EBP). Higher initial headache intensity was associated with greater use of EBP, odds ratio 1.29 (95% confidence interval 1.19–1.41) per pain intensity unit increase. Headache intensity declined sharply at 4 h after EBP and 127 (19.3%) patients received a second EBP. On average, no or mild headache (numeric rating score≤3) was observed 7 days after diagnosis. Intracranial bleeding was diagnosed in three patients (0.46%), and backache, headache, and analgesic use were more common at 3 months in the EBP group. Conclusions: Management practices vary between countries, but EBP was more often used in patients with greater initial headache intensity. EBP reduced headache intensity quickly, but about 20% of patients needed a second EBP. After 7 days, most patients had no or mild headache. Backache, headache, and analgesic use were more common at 3 months in patients receiving an EBP
    corecore