552 research outputs found

    MRI texture analysis of subchondral bone at the tibial plateau

    Get PDF
    OBJECTIVES: To determine the feasibility of MRI texture analysis as a method of quantifying subchondral bone architecture in knee osteoarthritis (OA).   METHODS: Asymptomatic subjects aged 20-30 (group 1, n = 10), symptomatic patients aged 40-50 (group 2, n = 10) and patients scheduled for knee replacement aged 55-85 (group 3, n = 10) underwent high spatial resolution T1-weighted coronal 3T knee MRI. Regions of interest were created in the medial (MT) and lateral (LT) tibial subchondral bone from which 20 texture parameters were calculated. T2 mapping of the tibial cartilage was performed in groups 1 and 2. Mean parameter values were compared between groups using ANOVA. Linear discriminant analysis (LDA) was used to evaluate the ability of texture analysis to classify subjects correctly.   RESULTS: Significant differences in 18/20 and 12/20 subchondral bone texture parameters were demonstrated between groups at the MT and LT respectively. There was no significant difference in mean MT or LT cartilage T2 values between group 1 and group 2. LDA demonstrated subject classification accuracy of 97 % (95 % CI 91-100 %).   CONCLUSION: MRI texture analysis of tibial subchondral bone may allow detection of alteration in subchondral bone architecture in OA. This has potential applications in understanding OA pathogenesis and assessing response to treatment.   KEY POINTS: • Improved techniques to monitor OA disease progression and treatment response are desirable • Subchondral bone (SB) may play significant role in the development of OA • MRI texture analysis is a method of quantifying changes in SB architecture • Pilot study showed that this technique is feasible and reliable • Significant differences in SB texture were demonstrated between individuals with/without OA

    First narrow-band search for continuous gravitational waves from known pulsars in advanced detector data

    Get PDF
    Spinning neutron stars asymmetric with respect to their rotation axis are potential sources of continuous gravitational waves for ground-based interferometric detectors. In the case of known pulsars a fully coherent search, based on matched filtering, which uses the position and rotational parameters obtained from electromagnetic observations, can be carried out. Matched filtering maximizes the signalto- noise (SNR) ratio, but a large sensitivity loss is expected in case of even a very small mismatch between the assumed and the true signal parameters. For this reason, narrow-band analysis methods have been developed, allowing a fully coherent search for gravitational waves from known pulsars over a fraction of a hertz and several spin-down values. In this paper we describe a narrow-band search of 11 pulsars using data from Advanced LIGO’s first observing run. Although we have found several initial outliers, further studies show no significant evidence for the presence of a gravitational wave signal. Finally, we have placed upper limits on the signal strain amplitude lower than the spin-down limit for 5 of the 11 targets over the bands searched; in the case of J1813-1749 the spin-down limit has been beaten for the first time. For an additional 3 targets, the median upper limit across the search bands is below the spin-down limit. This is the most sensitive narrow-band search for continuous gravitational waves carried out so far

    Omanicotyle heterospina n. gen. et n. comb. (Monogenea: Microcotylidae) from the gills of Argyrops spinifer (Forsskal) (Teleostei: Sparidae) from the Sea of Oman

    Get PDF
    Background: The Sultanate of Oman's aquaculture industry is expanding with an on-going assessment of potential new fish species for culture. The king soldier bream, Argyrops spinifer (Forsskål) (Sparidae), is one such species that is under consideration. During a routine health assessment of specimens caught in the Sea of Oman throughout the period November 2009 to March 2011, a number of gill polyopisthocotylean monogeneans were recovered. Methods: A subsequent study of the monogeneans using a range of morphology-based approaches indicated that these were Bivagina heterospina Mamaev et Parukhin, 1974. In the absence of pre-existing molecular data, an expanded description of this species is provided, including a differential diagnosis with other species and genera belonging to the subfamily Microcotylinae Monticelli, 1892 with the subsequent movement of this species to a new genus to accommodate it. Results: The polyopisthocotyleans collected from the gills of A. spinifer appear to be unique within the family Microcotylidae Taschenberg, 1879 in that, morphologically, they possess a pair of large, muscular vaginae each armed with a full crown of 16-18 robust spines and a unique dorsal region of folded tegument, which permits their discrimination from species of Bivagina Yamaguti, 1963. Sequencing of the SSU rDNA (complete 1968 bp) and LSU rDNA (partial 949 bp) places the specimens collected during this study within the subfamily Microcotylinae, but the LSU rDNA sequence differs from Bivagina and also from other microcotylid genera. Morphological features of B. heterospina sensu Mamaev et Parukhin, 1974 and the specimens collected from the current study are consistent with one another and represent a single species. The vaginal armature of these worms is unique and differs from all other genera within the Microcotylinae, including Bivagina, and its movement to Omanicotyle n. gen. to accommodate this species is proposed. Conclusions: A new genus, Omanicotyle n. gen., is erected to accommodate Omanicotyle [Bivagina] heterospina n. comb. which represents the first monogenean to be described from Omani marine waters. Given the pathogenic potential of microcotylids on captive held fish stocks, a full assessment of Omanicotyle heterospina n. gen. et n. comb. is now required before large-scale production commences

    Btk regulates macrophage polarization in response to lipopolysaccharide

    Get PDF
    Bacterial Lipopolysaccharide (LPS) is a strong inducer of inflammation and does so by inducing polarization of macrophages to the classic inflammatory M1 population. Given the role of Btk as a critical signal transducer downstream of TLR4, we investigated its role in M1/M2 induction. In Btk deficient (Btk (−\−)) mice we observed markedly reduced recruitment of M1 macrophages following intraperitoneal administration of LPS. Ex vivo analysis demonstrated an impaired ability of Btk(−/−) macrophages to polarize into M1 macrophages, instead showing enhanced induction of immunosuppressive M2-associated markers in response to M1 polarizing stimuli, a finding accompanied by reduced phosphorylation of STAT1 and enhanced STAT6 phosphorylation. In addition to STAT activation, M1 and M2 polarizing signals modulate the expression of inflammatory genes via differential activation of transcription factors and regulatory proteins, including NF-κB and SHIP1. In keeping with a critical role for Btk in macrophage polarization, we observed reduced levels of NF-κB p65 and Akt phosphorylation, as well as reduced induction of the M1 associated marker iNOS in Btk(−/−) macrophages in response to M1 polarizing stimuli. Additionally enhanced expression of SHIP1, a key negative regulator of macrophage polarisation, was observed in Btk(−/−) macrophages in response to M2 polarizing stimuli. Employing classic models of allergic M2 inflammation, treatment of Btk (−/−) mice with either Schistosoma mansoni eggs or chitin resulted in increased recruitment of M2 macrophages and induction of M2-associated genes. This demonstrates an enhanced M2 skew in the absence of Btk, thus promoting the development of allergic inflammation

    Rare missense variants in Tropomyosin-4 (TPM4) are associated with platelet dysfunction, cytoskeletal defects, and excessive bleeding

    Get PDF
    Background: A significant challenge is faced for the genetic diagnosis of inherited platelet disorders in which candidate genetic variants can be found in more than 100 bleeding, thrombotic, and platelet disorder genes, especially within families in which there are both normal and low platelet counts. Genetic variants of unknown clinical significance (VUS) are found in a significant proportion of such patients in which functional studies are required to prove pathogenicity. Objective: To identify the genetic cause in patients with a suspected platelet disorder and subsequently perform a detailed functional analysis of the candidate genetic variants found. Methods: Genetic and functional studies were undertaken in three patients in two unrelated families with a suspected platelet disorder and excessive bleeding. A targeted gene panel of previously known bleeding and platelet genes was used to identify plausible genetic variants. Deep platelet phenotyping was performed using platelet spreading analysis, transmission electron microscopy, immunofluorescence, and platelet function testing using lumiaggregometry and flow cytometry. Results: We report rare conserved missense variants (p.R182C and p.A183V) in TPM4 encoding tromomyosin-4 in 3 patients. Deep platelet phenotyping studies revealed similar platelet function defects across the 3 patients including reduced platelet secretion, and aggregation and spreading defects suggesting that TPM4 missense variants impact platelet function and show a disordered pattern of tropomyosin staining. Conclusions: Genetic and functional TPM4 defects are reported making TPM4 a diagnostic grade tier 1 gene and highlights the importance of including TPM4 in diagnostic genetic screening for patients with significant bleeding and undiagnosed platelet disorders, particularly for those with a normal platelet count

    A Cryogenic Silicon Interferometer for Gravitational-wave Detection

    Get PDF
    The detection of gravitational waves from compact binary mergers by LIGO has opened the era of gravitational wave astronomy, revealing a previously hidden side of the cosmos. To maximize the reach of the existing LIGO observatory facilities, we have designed a new instrument able to detect gravitational waves at distances 5 times further away than possible with Advanced LIGO, or at greater than 100 times the event rate. Observations with this new instrument will make possible dramatic steps toward understanding the physics of the nearby Universe, as well as observing the Universe out to cosmological distances by the detection of binary black hole coalescences. This article presents the instrument design and a quantitative analysis of the anticipated noise floor

    First measurement of the Hubble Constant from a Dark Standard Siren using the Dark Energy Survey Galaxies and the LIGO/Virgo Binary–Black-hole Merger GW170814

    Get PDF
    International audienceWe present a multi-messenger measurement of the Hubble constant H 0 using the binary–black-hole merger GW170814 as a standard siren, combined with a photometric redshift catalog from the Dark Energy Survey (DES). The luminosity distance is obtained from the gravitational wave signal detected by the Laser Interferometer Gravitational-Wave Observatory (LIGO)/Virgo Collaboration (LVC) on 2017 August 14, and the redshift information is provided by the DES Year 3 data. Black hole mergers such as GW170814 are expected to lack bright electromagnetic emission to uniquely identify their host galaxies and build an object-by-object Hubble diagram. However, they are suitable for a statistical measurement, provided that a galaxy catalog of adequate depth and redshift completion is available. Here we present the first Hubble parameter measurement using a black hole merger. Our analysis results in , which is consistent with both SN Ia and cosmic microwave background measurements of the Hubble constant. The quoted 68% credible region comprises 60% of the uniform prior range [20, 140] km s−1 Mpc−1, and it depends on the assumed prior range. If we take a broader prior of [10, 220] km s−1 Mpc−1, we find (57% of the prior range). Although a weak constraint on the Hubble constant from a single event is expected using the dark siren method, a multifold increase in the LVC event rate is anticipated in the coming years and combinations of many sirens will lead to improved constraints on H 0

    Supplement: "Localization and broadband follow-up of the gravitational-wave transient GW150914" (2016, ApJL, 826, L13)

    Get PDF
    This Supplement provides supporting material for Abbott et al. (2016a). We briefly summarize past electromagnetic (EM) follow-up efforts as well as the organization and policy of the current EM follow-up program. We compare the four probability sky maps produced for the gravitational-wave transient GW150914, and provide additional details of the EM follow-up observations that were performed in the different bands

    Search for post-merger gravitational waves from the remnant of the binary neutron star merger GW170817

    No full text
    In Advanced LIGO, detection and astrophysical source parameter estimation of the binary black hole merger GW150914 requires a calibrated estimate of the gravitational-wave strain sensed by the detectors. Producing an estimate from each detector's differential arm length control loop readout signals requires applying time domain filters, which are designed from a frequency domain model of the detector's gravitational-wave response. The gravitational-wave response model is determined by the detector's opto-mechanical response and the properties of its feedback control system. The measurements used to validate the model and characterize its uncertainty are derived primarily from a dedicated photon radiation pressure actuator, with cross-checks provided by optical and radio frequency references. We describe how the gravitational-wave readout signal is calibrated into equivalent gravitational-wave-induced strain and how the statistical uncertainties and systematic errors are assessed. Detector data collected over 38 calendar days, from September 12 to October 20, 2015, contain the event GW150914 and approximately 16 of coincident data used to estimate the event false alarm probability. The calibration uncertainty is less than 10% in magnitude and 10 degrees in phase across the relevant frequency band 20 Hz to 1 kHz

    Searches for continuous gravitational waves from nine young supernova remnants

    Get PDF
    We describe directed searches for continuous gravitational waves in data from the sixth LIGO science data run. The targets were nine young supernova remnants not associated with pulsars; eight of the remnants are associated with non-pulsing suspected neutron stars. One target's parameters are uncertain enough to warrant two searches, for a total of ten. Each search covered a broad band of frequencies and first and second frequency derivatives for a fixed sky direction. The searches coherently integrated data from the two LIGO interferometers over time spans from 5.3-25.3 days using the matched-filtering F-statistic. We found no credible gravitational-wave signals. We set 95% confidence upper limits as strong (low) as 4×10254\times10^{-25} on intrinsic strain, 2×1072\times10^{-7} on fiducial ellipticity, and 4×1054\times10^{-5} on r-mode amplitude. These beat the indirect limits from energy conservation and are within the range of theoretical predictions for neutron-star ellipticities and r-mode amplitudes.Comment: Science summary available at http://www.ligo.org/science/Publication-S6DirectedSNR/index.ph
    corecore