194 research outputs found

    Desing of an Control Unit for an Annunciator System

    Get PDF
    The control unit that is to be designed can be used to control the annunciators systems in many organizations. Annunciator is a Centralized Warning Panel [CWP], it can be used to disclose the layout and annunciate the status and measurement parameters of industrial processes, manufacturing facilities and other operations. The system performs monitoring, logging and storing of events i.e., faults and normalization of faults. System also provides accept and reset facilities for rectification of the faults. The overall flow of data in the system is through communication across the system via serial port connected to various ports using RS 232 along with method, utilities in the software which can be used to store and maintain data. Many Organizations have their machineries placed at distant places spread over acres of land. In order to increase the efficiency in controlling these machines and to achieve the status of these machines from the static place can be done using this control unit for an annunciator panel. DOI: 10.17762/ijritcc2321-8169.150310

    Electrocardiographic patch devices and contemporary wireless cardiac monitoring.

    Get PDF
    Cardiac electrophysiologic derangements often coexist with disorders of the circulatory system. Capturing and diagnosing arrhythmias and conduction system disease may lead to a change in diagnosis, clinical management and patient outcomes. Standard 12-lead electrocardiogram (ECG), Holter monitors and event recorders have served as useful diagnostic tools over the last few decades. However, their shortcomings are only recently being addressed by emerging technologies. With advances in device miniaturization and wireless technologies, and changing consumer expectations, wearable “on-body” ECG patch devices have evolved to meet contemporary needs. These devices are unobtrusive and easy to use, leading to increased device wear time and diagnostic yield. While becoming the standard for detecting arrhythmias and conduction system disorders in the outpatient setting where continuous ECG monitoring in the short to medium term (days to weeks) is indicated, these cardiac devices and related digital mobile health technologies are reshaping the clinician-patient interface with important implications for future healthcare delivery

    Safety of long-term denosumab therapy: results from the open label extension phase of two phase 3 studies in patients with metastatic breast and prostate cancer

    Get PDF
    Purpose: Zoledronic acid (ZA) or denosumab treatment reduces skeletal-related events; however, the safety of prolonged therapy has not been adequately studied. Here, we describe safety results of extended denosumab therapy in patients with bone metastases from the open-label extension phase of two phase 3 trials. Methods: Patients with metastatic breast or prostate cancer received subcutaneous denosumab 120 mg Q4W or intravenous ZA 4 mg Q4W in a double-blinded fashion. Denosumab demonstrated superior efficacy in the blinded treatment phase; thus, patients were offered open-label denosumab for up to an additional 2 years. Results: Cumulative median (Q1, Q3) denosumab exposure was 19.1 (9.2, 32.2) months in the breast cancer trial (n = 1019) and 12.0 (5.6, 21.3) months in the prostate cancer trial (n = 942); 295 patients received denosumab for >3 years. No new safety signals were identified during the open-label phase, or among patients who switched from ZA to denosumab. During the blinded treatment phase, exposure-adjusted subject incidences of osteonecrosis of the jaw (ONJ) were 49 (1.9 %) and 31 (1.2 %) in the denosumab and ZA groups, respectively. In total, 32 (6.9 %) and 25 (5.5 %) new cases of ONJ (not adjusted for exposure) were reported for patients continuing and switching to denosumab, respectively. The incidences of hypocalcemia were 4.3 and 3.1 %, in patients continuing and switching to denosumab, respectively. Conclusion: These results describe the safety profile of denosumab after long-term exposure, or after switching to denosumab from ZA. No new safety signals were identified. Hypocalcemia rates were similar in the blinded treatment and open-label phases. ONJ rates increased with increasing exposure to antiresorptives, consistent with previous reports

    Tea Consumption Enhances Endothelial-Dependent Vasodilation; a Meta-Analysis

    Get PDF
    Background: Tea consumption is associated with a lower risk of cardiovascular disease including stroke. Direct effects of tea components on the vasculature, particularly the endothelium, may partly explain this association. Objective: We performed a meta-analysis of controlled human intervention studies on the effect of tea on flow-mediated dilation (FMD) of the brachial artery, a measurement of endothelial function, which is suggested to be associated with cardiovascular risk. Methods: Human intervention studies were identified by systematic search of the databases Medline, Embase, Chemical Abstracts and Biosis through March 2009 and by hand-searching related articles. Studies were selected based on predefined criteria: intervention with tea as the sole experimental variable, placebo-controlled design, and no missing data on FMD outcome or its variability. A random effects model was used to calculate the pooled overall effect on FMD due to the intake of tea. The impact of various subject and treatment characteristics was investigated in the presence of heterogeneity. Results: In total, 9 studies from different research groups were included with 15 relevant study arms. The overall absolute increase in FMD of tea vs. placebo was 2.6 % of the arterial diameter (95 % CI: 1.8-3.3%; P-value,0.001) for a median daily dose of 500 mL of tea (2–3 cups). This is a relative increase of approximately 40 % compared to the average FMD of 6.3% measured under placebo or baseline conditions. There was significant heterogeneity between studies (P-value,0.001) tha

    How should individual participant data (IPD) from publicly funded clinical trials be shared?

    Get PDF
    BACKGROUND: Individual participant data (IPD) from completed clinical trials should be responsibly shared to support efficient clinical research, generate new knowledge and bring benefit to patients. The Medical Research Council (MRC) Hubs for Trials Methodology Research (HTMR) has developed guidance to facilitate the sharing of IPD from publicly funded clinical trials. METHODS: Development of the guidance was completed over four phases which included a focussed review of policy documents, a web-based survey of the UK Clinical Research Collaboration (CRC) Registered Clinical Trials Units (CTU) Network, participation of an expert committee and an open consultation with the UKCRC Registered CTU Network. The project was funded by the MRC HTMR (MR/L004933/1-R39). RESULTS: Good practice principles include: (i) the use of a controlled access approach, using a transparent and robust system to review requests and provide secure data access; (ii) seeking consent for sharing IPD from trial participants in all future clinical trials with adequate assurance that patient privacy and confidentiality can be maintained; and (iii) establishing an approach to resource the sharing of IPD which would include support from trial funders, sponsor organisations and users of IPD. The guidance has been endorsed by Cancer Research UK, MRC Methodology Research Programme Advisory Group, Wellcome Trust and the Executive Group of the UKCRC Registered CTU Network. The National Institute for Health Research (NIHR) has confirmed it is supportive of the application of this guidance. CONCLUSIONS: Implementation of these principles will improve transparency, increase the coherent sharing of IPD from publicly funded trials, and help publicly funded trials to adhere to trial funder and journal requirements for data sharing

    Global, regional, and national mortality among young people aged 10–24 years, 1950–2019: a systematic analysis for the Global Burden of Disease Study 2019

    Get PDF
    Summary: Background Documentation of patterns and long-term trends in mortality in young people, which reflect huge changes in demographic and social determinants of adolescent health, enables identification of global investment priorities for this age group. We aimed to analyse data on the number of deaths, years of life lost, and mortality rates by sex and age group in people aged 10–24 years in 204 countries and territories from 1950 to 2019 by use of estimates from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019. Methods We report trends in estimated total numbers of deaths and mortality rate per 100 000 population in young people aged 10–24 years by age group (10–14 years, 15–19 years, and 20–24 years) and sex in 204 countries and territories between 1950 and 2019 for all causes, and between 1980 and 2019 by cause of death. We analyse variation in outcomes by region, age group, and sex, and compare annual rate of change in mortality in young people aged 10–24 years with that in children aged 0–9 years from 1990 to 2019. We then analyse the association between mortality in people aged 10–24 years and socioeconomic development using the GBD Socio-demographic Index (SDI), a composite measure based on average national educational attainment in people older than 15 years, total fertility rate in people younger than 25 years, and income per capita. We assess the association between SDI and all-cause mortality in 2019, and analyse the ratio of observed to expected mortality by SDI using the most recent available data release (2017). Findings In 2019 there were 1·49 million deaths (95% uncertainty interval 1·39–1·59) worldwide in people aged 10–24 years, of which 61% occurred in males. 32·7% of all adolescent deaths were due to transport injuries, unintentional injuries, or interpersonal violence and conflict; 32·1% were due to communicable, nutritional, or maternal causes; 27·0% were due to non-communicable diseases; and 8·2% were due to self-harm. Since 1950, deaths in this age group decreased by 30·0% in females and 15·3% in males, and sex-based differences in mortality rate have widened in most regions of the world. Geographical variation has also increased, particularly in people aged 10–14 years. Since 1980, communicable and maternal causes of death have decreased sharply as a proportion of total deaths in most GBD super-regions, but remain some of the most common causes in sub-Saharan Africa and south Asia, where more than half of all adolescent deaths occur. Annual percentage decrease in all-cause mortality rate since 1990 in adolescents aged 15–19 years was 1·3% in males and 1·6% in females, almost half that of males aged 1–4 years (2·4%), and around a third less than in females aged 1–4 years (2·5%). The proportion of global deaths in people aged 0–24 years that occurred in people aged 10–24 years more than doubled between 1950 and 2019, from 9·5% to 21·6%. Interpretation Variation in adolescent mortality between countries and by sex is widening, driven by poor progress in reducing deaths in males and older adolescents. Improving global adolescent mortality will require action to address the specific vulnerabilities of this age group, which are being overlooked. Furthermore, indirect effects of the COVID-19 pandemic are likely to jeopardise efforts to improve health outcomes including mortality in young people aged 10–24 years. There is an urgent need to respond to the changing global burden of adolescent mortality, address inequities where they occur, and improve the availability and quality of primary mortality data in this age group

    Global age-sex-specific fertility, mortality, healthy life expectancy (HALE), and population estimates in 204 countries and territories, 1950-2019 : a comprehensive demographic analysis for the Global Burden of Disease Study 2019

    Get PDF
    Background Accurate and up-to-date assessment of demographic metrics is crucial for understanding a wide range of social, economic, and public health issues that affect populations worldwide. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019 produced updated and comprehensive demographic assessments of the key indicators of fertility, mortality, migration, and population for 204 countries and territories and selected subnational locations from 1950 to 2019. Methods 8078 country-years of vital registration and sample registration data, 938 surveys, 349 censuses, and 238 other sources were identified and used to estimate age-specific fertility. Spatiotemporal Gaussian process regression (ST-GPR) was used to generate age-specific fertility rates for 5-year age groups between ages 15 and 49 years. With extensions to age groups 10-14 and 50-54 years, the total fertility rate (TFR) was then aggregated using the estimated age-specific fertility between ages 10 and 54 years. 7417 sources were used for under-5 mortality estimation and 7355 for adult mortality. ST-GPR was used to synthesise data sources after correction for known biases. Adult mortality was measured as the probability of death between ages 15 and 60 years based on vital registration, sample registration, and sibling histories, and was also estimated using ST-GPR. HIV-free life tables were then estimated using estimates of under-5 and adult mortality rates using a relational model life table system created for GBD, which closely tracks observed age-specific mortality rates from complete vital registration when available. Independent estimates of HIV-specific mortality generated by an epidemiological analysis of HIV prevalence surveys and antenatal clinic serosurveillance and other sources were incorporated into the estimates in countries with large epidemics. Annual and single-year age estimates of net migration and population for each country and territory were generated using a Bayesian hierarchical cohort component model that analysed estimated age-specific fertility and mortality rates along with 1250 censuses and 747 population registry years. We classified location-years into seven categories on the basis of the natural rate of increase in population (calculated by subtracting the crude death rate from the crude birth rate) and the net migration rate. We computed healthy life expectancy (HALE) using years lived with disability (YLDs) per capita, life tables, and standard demographic methods. Uncertainty was propagated throughout the demographic estimation process, including fertility, mortality, and population, with 1000 draw-level estimates produced for each metric. Findings The global TFR decreased from 2.72 (95% uncertainty interval [UI] 2.66-2.79) in 2000 to 2.31 (2.17-2.46) in 2019. Global annual livebirths increased from 134.5 million (131.5-137.8) in 2000 to a peak of 139.6 million (133.0-146.9) in 2016. Global livebirths then declined to 135.3 million (127.2-144.1) in 2019. Of the 204 countries and territories included in this study, in 2019, 102 had a TFR lower than 2.1, which is considered a good approximation of replacement-level fertility. All countries in sub-Saharan Africa had TFRs above replacement level in 2019 and accounted for 27.1% (95% UI 26.4-27.8) of global livebirths. Global life expectancy at birth increased from 67.2 years (95% UI 66.8-67.6) in 2000 to 73.5 years (72.8-74.3) in 2019. The total number of deaths increased from 50.7 million (49.5-51.9) in 2000 to 56.5 million (53.7-59.2) in 2019. Under-5 deaths declined from 9.6 million (9.1-10.3) in 2000 to 5.0 million (4.3-6.0) in 2019. Global population increased by 25.7%, from 6.2 billion (6.0-6.3) in 2000 to 7.7 billion (7.5-8.0) in 2019. In 2019, 34 countries had negative natural rates of increase; in 17 of these, the population declined because immigration was not sufficient to counteract the negative rate of decline. Globally, HALE increased from 58.6 years (56.1-60.8) in 2000 to 63.5 years (60.8-66.1) in 2019. HALE increased in 202 of 204 countries and territories between 2000 and 2019. Interpretation Over the past 20 years, fertility rates have been dropping steadily and life expectancy has been increasing, with few exceptions. Much of this change follows historical patterns linking social and economic determinants, such as those captured by the GBD Socio-demographic Index, with demographic outcomes. More recently, several countries have experienced a combination of low fertility and stagnating improvement in mortality rates, pushing more populations into the late stages of the demographic transition. Tracking demographic change and the emergence of new patterns will be essential for global health monitoring. Copyright (C) 2020 The Author(s). Published by Elsevier Ltd.Peer reviewe
    corecore