544 research outputs found

    Age estimation during the blow fly intra-puparial period: a qualitative and quantitative approach using micro-computed tomography

    Get PDF
    © The Author(s) 2017. Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The attached file is the published version of the article

    Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector

    Get PDF
    Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente

    Comb-Based Radio-Frequency Photonic Filters with Rapid Tunability and High Selectivity

    Get PDF
    Photonic technologies have received considerable attention for enhancement of radio-frequency (RF) electrical systems, including high-frequency analog signal transmission, control of phased arrays, analog-to-digital conversion, and signal processing. Although the potential of radio-frequency photonics for implementation of tunable electrical filters over broad RF bandwidths has been much discussed, realization of programmable filters with highly selective filter lineshapes and rapid reconfigurability has faced significant challenges. A new approach for RF photonic filters based on frequency combs offers a potential route to simultaneous high stopband attenuation, fast tunability, and bandwidth reconfiguration. In one configuration tuning of the RF passband frequency is demonstrated with unprecedented (~40 ns) speed by controlling the optical delay between combs. In a second, fixed filter configuration, cascaded four-wave mixing simultaneously broadens and smoothes comb spectra, resulting in Gaussian RF filter lineshapes exhibiting extremely high (>60 dB) main lobe to sidelobe suppression ratio and (>70 dB) stopband attenuation.Comment: Updated the submission with the most recent version of the pape

    Methanotrophy, Methylotrophy, the Human Body and Disease

    Get PDF
    Methylotrophic Bacteria use one-carbon (C1) compounds as their carbon source. They have been known to be associated to the human body for almost 20 years as part of the normal flora and were identified as pathogens in the early 1990s in end-stage HIV patients and chemotherapy patients. In this chapter, I look at C1 compounds in the human body and exposure from the environment and then consider Methylobacterium spp. and Methylorubrum spp. in terms of infections, its role in breast and bowel cancers; Methylococcus capsulatus and its role in inflammatory bowel disease, and Brevibacterium casei and Hyphomicrobium sulfonivorans as part of the normal human flora. I also consider the abundance of methylotrophs from the Actinobacteria being identified in human studies and the potential bias of the ionic strength of culture media and the needs for future work. Within the scope of future work, I consider the need for the urgent assessment of the pathogenic, oncogenic, mutagenic and teratogenic potential of Methylobacterium spp. and Methylorubrum spp. and the need to handle them at higher containment levels until more data are available

    Underwater Application of Quantitative PCR on an Ocean Mooring

    Get PDF
    The Environmental Sample Processor (ESP) is a device that allows for the underwater, autonomous application of DNA and protein probe array technologies as a means to remotely identify and quantify, in situ, marine microorganisms and substances they produce. Here, we added functionality to the ESP through the development and incorporation of a module capable of solid-phase nucleic acid extraction and quantitative PCR (qPCR). Samples collected by the instrument were homogenized in a chaotropic buffer compatible with direct detection of ribosomal RNA (rRNA) and nucleic acid purification. From a single sample, both an rRNA community profile and select gene abundances were ascertained. To illustrate this functionality, we focused on bacterioplankton commonly found along the central coast of California and that are known to vary in accordance with different oceanic conditions. DNA probe arrays targeting rRNA revealed the presence of 16S rRNA indicative of marine crenarchaea, SAR11 and marine cyanobacteria; in parallel, qPCR was used to detect 16S rRNA genes from the former two groups and the large subunit RuBisCo gene (rbcL) from Synecchococcus. The PCR-enabled ESP was deployed on a coastal mooring in Monterey Bay for 28 days during the spring-summer upwelling season. The distributions of the targeted bacterioplankon groups were as expected, with the exception of an increase in abundance of marine crenarchaea in anomalous nitrate-rich, low-salinity waters. The unexpected co-occurrence demonstrated the utility of the ESP in detecting novel events relative to previously described distributions of particular bacterioplankton groups. The ESP can easily be configured to detect and enumerate genes and gene products from a wide range of organisms. This study demonstrated for the first time that gene abundances could be assessed autonomously, underwater in near real-time and referenced against prevailing chemical, physical and bulk biological conditions

    Response of a Specialist Bat to the Loss of a Critical Resource

    Get PDF
    Human activities have negatively impacted many species, particularly those with unique traits that restrict their use of resources and conditions to specific habitats. Unfortunately, few studies have been able to isolate the individual and combined effects of different threats on population persistence in a natural setting, since not all organisms can be associated with discrete habitat features occurring over limited spatial scales. We present the results of a field study that examines the short-term effects of roost loss in a specialist bat using a conspicuous, easily modified resource. We mimicked roost loss in the natural habitat and monitored individuals before and after the perturbation to determine patterns of resource use, spatial movements, and group stability. Our study focused on the disc-winged bat Thyroptera tricolor, a species highly morphologically specialized for roosting in the developing furled leaves of members of the order Zingiberales. We found that the number of species used for roosting increased, that home range size increased (before: mean 0.14±SD 0.08 ha; after: 0.73±0.68 ha), and that mean association indices decreased (before: 0.95±0.10; after: 0.77±0.18) once the roosting habitat was removed. These results demonstrate that the removal of roosting resources is associated with a decrease in roost-site preferences or selectivity, an increase in mobility of individuals, and a decrease in social cohesion. These responses may reduce fitness by potentially increasing energetic expenditure, predator exposure, and a decrease in cooperative interactions. Despite these potential risks, individuals never used roost-sites other than developing furled leaves, suggesting an extreme specialization that could ultimately jeopardize the long-term persistence of this species' local populations

    Measurement of differential cross sections and W + /W − cross-section ratios for W boson production in association with jets at √s =8 TeV with the ATLAS detector

    Get PDF
    This paper presents a measurement of the W boson production cross section and the W + /W − cross-section ratio, both in association with jets, in proton--proton collisions at s √ =8 TeV with the ATLAS experiment at the Large Hadron Collider. The measurement is performed in final states containing one electron and missing transverse momentum using data corresponding to an integrated luminosity of 20.2 fb −1 . Differential cross sections for events with one or two jets are presented for a range of observables, including jet transverse momenta and rapidities, the scalar sum of transverse momenta of the visible particles and the missing transverse momentum in the event, and the transverse momentum of the W boson. For a subset of the observables, the differential cross sections of positively and negatively charged W bosons are measured separately. In the cross-section ratio of W + /W − the dominant systematic uncertainties cancel out, improving the measurement precision by up to a factor of nine. The observables and ratios selected for this paper provide valuable input for the up quark, down quark, and gluon parton distribution functions of the proto
    corecore