237 research outputs found

    Charmonium production at neutrino factories

    Get PDF
    At existing and planned neutrino factories (high energy and high intensity neutrino beam facilities) precision studies of QCD in neutrino-nucleon interactions are a realistic opportunity. We investigate charmonium production in fixed target neutrino experiments. We find that J/ψJ/\psi production in neutrino-nucleon collision is dominated by the color octet 3S1^3S_1 NRQCD matrix element in a neutral current process, which is not accessible in photo or leptoproduction. Neutrino experiments at a future Muon Collider will acquire sufficient event rate to accurately measure color octet matrix element contributions. The currently running high energy neutrino experiments, NOMAD and NuTeV could also observe several such events.Comment: 13 pages Latex, with five embedded eps figures. Cosmetic fixups in the figures, otherwise unchange

    Some flows in shape optimization

    Get PDF
    Geometric flows related to shape optimization problems of Bernoulli type are investigated. The evolution law is the sum of a curvature term and a nonlocal term of Hele-Shaw type. We introduce generalized set solutions, the definition of which is widely inspired by viscosity solutions. The main result is an inclusion preservation principle for generalized solutions. As a consequence, we obtain existence, uniqueness and stability of solutions. Asymptotic behavior for the flow is discussed: we prove that the solutions converge to a generalized Bernoulli exterior free boundary problem

    Viscosity solutions of systems of PDEs with interconnected obstacles and Multi modes switching problems

    Full text link
    This paper deals with existence and uniqueness, in viscosity sense, of a solution for a system of m variational partial differential inequalities with inter-connected obstacles. A particular case of this system is the deterministic version of the Verification Theorem of the Markovian optimal m-states switching problem. The switching cost functions are arbitrary. This problem is connected with the valuation of a power plant in the energy market. The main tool is the notion of systems of reflected BSDEs with oblique reflection.Comment: 36 page

    Insulating and Conducting Phases of RbC60

    Full text link
    Optical measurements were performed on thin films of Rbx_{x}C60_{60}, identified by X-ray diffraction as mostly x=1x=1 material. The samples were subjected to various heat treatments, including quenching and slow cooling from 400K. The dramatic increase in the transmission of the quenched samples, and the relaxation towards the transmission observed in slow cooled samples provides direct evidence for the existence of a metastable insulating phase. Slow cooling results in a phase transition between two electrically conducting phases.Comment: Minor revisions. Submitted to PRB, RevTeX 3.0 file, 2 postscript figures included, ir_dop

    An Optimal Execution Problem with Market Impact

    Full text link
    We study an optimal execution problem in a continuous-time market model that considers market impact. We formulate the problem as a stochastic control problem and investigate properties of the corresponding value function. We find that right-continuity at the time origin is associated with the strength of market impact for large sales, otherwise the value function is continuous. Moreover, we show the semi-group property (Bellman principle) and characterise the value function as a viscosity solution of the corresponding Hamilton-Jacobi-Bellman equation. We introduce some examples where the forms of the optimal strategies change completely, depending on the amount of the trader's security holdings and where optimal strategies in the Black-Scholes type market with nonlinear market impact are not block liquidation but gradual liquidation, even when the trader is risk-neutral.Comment: 36 pages, 8 figures, a modified version of the article "An optimal execution problem with market impact" in Finance and Stochastics (2014

    Heavy quarkonium: progress, puzzles, and opportunities

    Get PDF
    A golden age for heavy quarkonium physics dawned a decade ago, initiated by the confluence of exciting advances in quantum chromodynamics (QCD) and an explosion of related experimental activity. The early years of this period were chronicled in the Quarkonium Working Group (QWG) CERN Yellow Report (YR) in 2004, which presented a comprehensive review of the status of the field at that time and provided specific recommendations for further progress. However, the broad spectrum of subsequent breakthroughs, surprises, and continuing puzzles could only be partially anticipated. Since the release of the YR, the BESII program concluded only to give birth to BESIII; the BB-factories and CLEO-c flourished; quarkonium production and polarization measurements at HERA and the Tevatron matured; and heavy-ion collisions at RHIC have opened a window on the deconfinement regime. All these experiments leave legacies of quality, precision, and unsolved mysteries for quarkonium physics, and therefore beg for continuing investigations. The plethora of newly-found quarkonium-like states unleashed a flood of theoretical investigations into new forms of matter such as quark-gluon hybrids, mesonic molecules, and tetraquarks. Measurements of the spectroscopy, decays, production, and in-medium behavior of c\bar{c}, b\bar{b}, and b\bar{c} bound states have been shown to validate some theoretical approaches to QCD and highlight lack of quantitative success for others. The intriguing details of quarkonium suppression in heavy-ion collisions that have emerged from RHIC have elevated the importance of separating hot- and cold-nuclear-matter effects in quark-gluon plasma studies. This review systematically addresses all these matters and concludes by prioritizing directions for ongoing and future efforts.Comment: 182 pages, 112 figures. Editors: N. Brambilla, S. Eidelman, B. K. Heltsley, R. Vogt. Section Coordinators: G. T. Bodwin, E. Eichten, A. D. Frawley, A. B. Meyer, R. E. Mitchell, V. Papadimitriou, P. Petreczky, A. A. Petrov, P. Robbe, A. Vair

    Characteristics of Early-Onset vs Late-Onset Colorectal Cancer: A Review.

    Get PDF
    The incidence of early-onset colorectal cancer (younger than 50 years) is rising globally, the reasons for which are unclear. It appears to represent a unique disease process with different clinical, pathological, and molecular characteristics compared with late-onset colorectal cancer. Data on oncological outcomes are limited, and sensitivity to conventional neoadjuvant and adjuvant therapy regimens appear to be unknown. The purpose of this review is to summarize the available literature on early-onset colorectal cancer. Within the next decade, it is estimated that 1 in 10 colon cancers and 1 in 4 rectal cancers will be diagnosed in adults younger than 50 years. Potential risk factors include a Westernized diet, obesity, antibiotic usage, and alterations in the gut microbiome. Although genetic predisposition plays a role, most cases are sporadic. The full spectrum of germline and somatic sequence variations implicated remains unknown. Younger patients typically present with descending colonic or rectal cancer, advanced disease stage, and unfavorable histopathological features. Despite being more likely to receive neoadjuvant and adjuvant therapy, patients with early-onset disease demonstrate comparable oncological outcomes with their older counterparts. The clinicopathological features, underlying molecular profiles, and drivers of early-onset colorectal cancer differ from those of late-onset disease. Standardized, age-specific preventive, screening, diagnostic, and therapeutic strategies are required to optimize outcomes

    On the mechanisms governing gas penetration into a tokamak plasma during a massive gas injection

    Get PDF
    A new 1D radial fluid code, IMAGINE, is used to simulate the penetration of gas into a tokamak plasma during a massive gas injection (MGI). The main result is that the gas is in general strongly braked as it reaches the plasma, due to mechanisms related to charge exchange and (to a smaller extent) recombination. As a result, only a fraction of the gas penetrates into the plasma. Also, a shock wave is created in the gas which propagates away from the plasma, braking and compressing the incoming gas. Simulation results are quantitatively consistent, at least in terms of orders of magnitude, with experimental data for a D 2 MGI into a JET Ohmic plasma. Simulations of MGI into the background plasma surrounding a runaway electron beam show that if the background electron density is too high, the gas may not penetrate, suggesting a possible explanation for the recent results of Reux et al in JET (2015 Nucl. Fusion 55 093013)

    Geographical and temporal distribution of SARS-CoV-2 clades in the WHO European Region, January to June 2020

    Get PDF
    We show the distribution of SARS-CoV-2 genetic clades over time and between countries and outline potential genomic surveillance objectives. We applied three available genomic nomenclature systems for SARS-CoV-2 to all sequence data from the WHO European Region available during the COVID-19 pandemic until 10 July 2020. We highlight the importance of real-time sequencing and data dissemination in a pandemic situation. We provide a comparison of the nomenclatures and lay a foundation for future European genomic surveillance of SARS-CoV-2.Peer reviewe
    corecore