Geometric flows related to shape optimization problems of Bernoulli type are
investigated. The evolution law is the sum of a curvature term and a nonlocal
term of Hele-Shaw type. We introduce generalized set solutions, the definition
of which is widely inspired by viscosity solutions. The main result is an
inclusion preservation principle for generalized solutions. As a consequence,
we obtain existence, uniqueness and stability of solutions. Asymptotic behavior
for the flow is discussed: we prove that the solutions converge to a
generalized Bernoulli exterior free boundary problem