65 research outputs found

    A measurement of the tau mass and the first CPT test with tau leptons

    Full text link
    We measure the mass of the tau lepton to be 1775.1+-1.6(stat)+-1.0(syst.) MeV using tau pairs from Z0 decays. To test CPT invariance we compare the masses of the positively and negatively charged tau leptons. The relative mass difference is found to be smaller than 3.0 10^-3 at the 90% confidence level.Comment: 10 pages, 4 figures, Submitted to Phys. Letts.

    A Study of One-Prong Tau Decays with a Charged Kaon

    Get PDF
    From an analysis of the ionisation energy loss of charged particles selected from 110326 e+e- -> tau+tau- candidates recorded by the OPAL detector at e+e- centre-of-mass energies near the Z0 resonance, we determine the one-prong tau decay branching ratios: Br(tau- -> nu_tau K- >=0h0) = 1.528 +- 0.039 +- 0.040 % Br(tau- -> nu_tau K-) = 0.658 +- 0.024 +- 0.029 % where the h0 notation refers to a pi0, an eta, a K^0_S, or a K^0_L, and where the first uncertainty is statistical and the second is systematic.From an analysis of the ionisation energy loss of charged particles selected from 110326 e+e- -> tau+tau- candidates recorded by the OPAL detector at e+e- centre-of-mass energies near the Z0 resonance, we determine the one-prong tau decay branching ratios: Br(tau- -> nu_tau K- >=0h0) = 1.528 +- 0.039 +- 0.040 % Br(tau- -> nu_tau K-) = 0.658 +- 0.024 +- 0.029 % where the h0 notation refers to a pi0, an eta, a K^0_S, or a K^0_L, and where the first uncertainty is statistical and the second is systematic

    Multiplicities of π0\pi^{0}, η\eta, K0K^{0} and of charged particles in quark and gluon jets

    Get PDF
    We compared the multiplicities of pizero, eta, Kzero and of charged particles in quark and gluon jets in 3-jet events, as measured by the OPAL experiment at LEP. The comparisons were performed for distributions unfolded to 100% pure quark and gluon jets, at an effective scale Qjet which took into account topological dependences of the 3-jet environment. The ratio of particle multiplicity in gluon jets to that in quark jets as a function of Qjet for pizero, eta and Kzero was found to be independent of the particle species. This is consistent with the QCD prediction that the observed enhancement in the mean particle rate in gluon jets with respect to quark jets should be independent of particle species. In contrast to some theoretical predictions and previous observations, we observed no evidence for an enhancement of eta meson production in gluon jets with respect to quark jets, beyond that observed for charged particles. We measured the ratio of the slope of the average charged particle multiplicity in gluon jets to that in quark jets, C, and we compared it to a next-to-next-to-next-to leading order calculation. Our result, C=2.27+-0.20(stat+syst),is about one standard deviation higher than the perturbative prediction.We compared the multiplicities of pizero, eta, Kzero and of charged particles in quark and gluon jets in 3-jet events, as measured by the OPAL experiment at LEP. The comparisons were performed for distributions unfolded to 100% pure quark and gluon jets, at an effective scale Qjet which took into account topological dependences of the 3-jet environment. The ratio of particle multiplicity in gluon jets to that in quark jets as a function of Qjet for pizero, eta and Kzero was found to be independent of the particle species. This is consistent with the QCD prediction that the observed enhancement in the mean particle rate in gluon jets with respect to quark jets should be independent of particle species. In contrast to some theoretical predictions and previous observations, we observed no evidence for an enhancement of eta meson production in gluon jets with respect to quark jets, beyond that observed for charged particles. We measured the ratio of the slope of the average charged particle multiplicity in gluon jets to that in quark jets, C, and we compared it to a next-to-next-to-next-to leading order calculation. Our result, C=2.27+-0.20(stat+syst),is about one standard deviation higher than the perturbative prediction

    Measurements of RbR_{b}, AFBbA_{FB}^{b} and AFBcA_{FB}^{c} in e+ee^{+}e^{-} Collisions at 130-189 GeV

    Get PDF
    The cross-section ratio Rb=sigma(e+e- to b-antib)/sigma(e+e- to q-antiq) andthe bottom and charm forward-backward asymmetries AFB^b and AFB^c are measuredusing event samples collected by the OPAL detector at centre-of-mass energiesbetween 130 and 189 GeV. Events with bottom quark production are selected witha secondary vertex tag, and a hemisphere charge algorithm is used to extractAFB^b. In addition, the bottom and charm asymmetries are measured using leptonsfrom semileptonic decays of heavy hadrons and pions from D*+ to D0pi+ decays.The results are in agreement with the Standard Model predictions.The cross-section ratio Rb=sigma(e+e- to b-antib)/sigma(e+e- to q-antiq) and the bottom and charm forward-backward asymmetries AFB^b and AFB^c are measured using event samples collected by the OPAL detector at centre-of-mass energies between 130 and 189 GeV. Events with bottom quark production are selected with a secondary vertex tag, and a hemisphere charge algorithm is used to extract AFB^b. In addition, the bottom and charm asymmetries are measured using leptons from semileptonic decays of heavy hadrons and pions from D*+ to D0pi+ decays. The results are in agreement with the Standard Model predictions

    First Measurement of the Inclusive Branching Ratio of b Hadrons ϕ\to \phi Mesons in Z0Z^{0} Decays

    Get PDF
    The inclusive production rate of phi mesons from the decay of b hadrons produced in Z0 decays was measured to be Br(b->phi+X) = 0.0282+-0.0013(stat.)+-0.0019(syst.), using data collected by the OPAL detector at LEP.The inclusive branching fraction of φ mesons from the decay of b hadrons produced in Z decays was measured to be Br(b→ φ X)=0.0282±0.0013 (stat.)±0.0019 (syst.), using data collected by the OPAL detector at LEP.The inclusive production rate of phi mesons from the decay of b hadrons produced in Z0 decays was measured to be Br(b->phi+X) = 0.0282+-0.0013(stat.)+-0.0019(syst.), using data collected by the OPAL detector at LEP

    A search for neutral Higgs bosons in the MSSM and models with two scalar field doublets

    Get PDF
    A search is described for the neutral Higgs bosons h^0 and A^0 predicted by models with two scalar field doublets and, in particular, the Minimal Supersymmetric Standard Model (MSSM). The search in the Z^0 h^0 and h^0 A^0 production channels is based on data corresponding to an integrated luminosity of 25 pb^{-1} from e^+e^- collisions at centre-of-mass energies between 130 and 172GeV collected with the OPAL detector at LEP. The observation of a number of candidates consistent with Standard Model background expectations is used in combination with earlier results from data collected at the Z^0 resonance to set limits on m_h and m_A in general models with two scalar field doublets and in the MSSM. For example, in the MSSM, for tan(beta) > 1, minimal and maximal scalar top quark mixing and soft SUSY-breaking masses of 1 TeV, the 95% confidence level limits m_h > 59.0 GeV and m_A > 59.5 GeV are obtained. For the first time, the MSSM parameter space is explored in a detailed scan.A search is described for the neutral Higgs bosons h^0 and A^0 predicted by models with two scalar field doublets and, in particular, the Minimal Supersymmetric Standard Model (MSSM). The search in the Z^0 h^0 and h^0 A^0 production channels is based on data corresponding to an integrated luminosity of 25 pb^{-1} from e^+e^- collisions at centre-of-mass energies between 130 and 172 GeV collected with the OPAL detector at LEP. The observation of a number of candidates consistent with Standard Model background expectations is used in combination with earlier results from data collected at the Z^0 resonance to set limits on m_h and m_A in general models with two scalar field doublets and in the MSSM. For example, in the MSSM, for tan(beta) > 1, minimal and maximal scalar top quark mixing and soft SUSY-breaking masses of 1 TeV, the 95% confidence level limits m_h > 59.0 GeV and m_A > 59.5 GeV are obtained. For the first time, the MSSM parameter space is explored in a detailed scan

    Measurements of differential production cross sections for a Z boson in association with jets in pp collisions at root s=8 TeV

    Get PDF
    Peer reviewe

    Search for jet extinction in the inclusive jet-pT spectrum from proton-proton collisions at s=8 TeV

    Get PDF
    Published by the American Physical Society under the terms of the Creative Commons Attribution 3.0 License. Further distribution of this work must maintain attribution to the author(s) and the published articles title, journal citation, and DOI.The first search at the LHC for the extinction of QCD jet production is presented, using data collected with the CMS detector corresponding to an integrated luminosity of 10.7  fb−1 of proton-proton collisions at a center-of-mass energy of 8 TeV. The extinction model studied in this analysis is motivated by the search for signatures of strong gravity at the TeV scale (terascale gravity) and assumes the existence of string couplings in the strong-coupling limit. In this limit, the string model predicts the suppression of all high-transverse-momentum standard model processes, including jet production, beyond a certain energy scale. To test this prediction, the measured transverse-momentum spectrum is compared to the theoretical prediction of the standard model. No significant deficit of events is found at high transverse momentum. A 95% confidence level lower limit of 3.3 TeV is set on the extinction mass scale

    Search for the associated production of the Higgs boson with a top-quark pair

    Get PDF
    A search for the standard model Higgs boson produced in association with a top-quark pair t t ¯ H (tt¯H) is presented, using data samples corresponding to integrated luminosities of up to 5.1 fb −1 and 19.7 fb −1 collected in pp collisions at center-of-mass energies of 7 TeV and 8 TeV respectively. The search is based on the following signatures of the Higgs boson decay: H → hadrons, H → photons, and H → leptons. The results are characterized by an observed t t ¯ H tt¯H signal strength relative to the standard model cross section, μ = σ/σ SM ,under the assumption that the Higgs boson decays as expected in the standard model. The best fit value is μ = 2.8 ± 1.0 for a Higgs boson mass of 125.6 GeV
    corecore