171 research outputs found

    The Water Vapor Abundance in Orion KL Outflows

    Get PDF
    We present the detection and modeling of more than 70 far-IR pure rotational lines of water vapor, including the 18O and 17O isotopologues, towards Orion KL. Observations were performed with the Long Wavelength Spectrometer Fabry-Perot (LWS/FP; R~6800-9700) on board the Infrared Space Observatory (ISO) between ~43 and ~197 um. The water line profiles evolve from P-Cygni type profiles (even for the H2O18 lines) to pure emission at wavelengths above ~100 um. We find that most of the water emission/absorption arises from an extended flow of gas expanding at 25+-5 kms^-1. Non-local radiative transfer models show that much of the water excitation and line profile formation is driven by the dust continuum emission. The derived beam averaged water abundance is 2-3x10^-5. The inferred gas temperature Tk=80-100 K suggests that: (i) water could have been formed in the "plateau" by gas phase neutral-neutral reactions with activation barriers if the gas was previously heated (e.g. by shocks) to >500 K and/or (ii) H2O formation in the outflow is dominated by in-situ evaporation of grain water-ice mantles and/or (iii) H2O was formed in the innermost and warmer regions (e.g. the hot core) and was swept up in ~1000 yr, the dynamical timescale of the outflow.Comment: Accepted for publication in ApJ letters [2006 August 7] (5 pages 2, figures, not edited

    Far-IR Excited OH Lines from Orion KL Outflows

    Get PDF
    Accepted in ApJ letters, 2006 March 2As part of the first far-IR line survey towards Orion KL, we present the detection of seven new rotationally excited OH Lambda-doublets (at 48, 65, 71, 79, 98 and 115 um). Observations were performed with the Long Wavelength Spectrometer (LWS) Fabry-Perots on board the Infrared Space Observatory (ISO). In total, more than 20 resolved OH rotational lines, with upper energy levels up to 620 K, have been detected at an angular and velocity resolutions of 80$'' and 33 km s^-1 respectively. OH line profiles show a complex behavior evolving from pure absorption, P-Cygni type to pure emission. We also present a large scale 6' declination raster in the OH ^2\Pi_3/2 J=5/2^+-3/2^- and ^2\Pi_3/2 J=7/2^-5/2^+ lines (at 119.441 and 84.597 um) revealing the decrease of excitation outside the core of the cloud. From the observed profiles, mean intrinsic line widths and velocity offsets between emission and absorption line peaks we conclude that most of the excited OH arises from Orion outflow(s), i.e. the ``plateau'' component. We determine an averaged OH abundance relative to H_2 of X(OH)=(0.5-1.0)x10^-6, a kinetic temperature of 100 K and a density of n(H_2)=5x10^5 cm^-3. Even with these conditions, the OH excitation is heavily coupled with the strong dust continuum emission from the inner hot core regions and from the expanding flow itself.Peer reviewe

    A far-infrared molecular and atomic line survey of the Orion KL region

    Get PDF
    We have carried out a high spectral resolution line survey towards the Orion Kleinmann-Low (KL) cluster from 44-188 um. The observations were taken with the Long Wavelength Spectrometer (LWS) in Fabry-Perot mode, on board the Infrared Space Observatory (ISO). A total of 152 lines are clearly detected and a further 34 features are present as possible detections. The spectrum is dominated by the molecular species H2O, OH and CO, along with [OI] and [CII] lines from PDR or shocked gas and [OIII], [NIII] lines from the foreground M42 HII region. Several isotopic species, as well as NH3, are also detected. HDO and H3O+ are tentatively detected for the first time in the far-infrared range towards Orion-KL. A basic analysis of the line observations is carried out, by comparing with previous measurements and published models and deriving rotational temperatures and column densities in the case of the molecular species. The complexity of the region requires more sophisticated models for the interpretation of all the line observations.Comment: Accepted by MNRAS 2006 April 2

    Physical parameters for Orion KL from modelling its ISO high resolution far-IR CO line spectrum

    Get PDF
    As part of the first high resolution far-IR spectral survey of the Orion KL region (Lerate et al. 2006), we observed 20 CO emission lines with Jup=16 to Jup=39 (upper levels from approx 752 K to 4294 K above the ground state). Observations were taken using the Long Wavelength Spectrometer (LWS) on board the Infrared Space Observatory (ISO), in its high resolution Fabry-Perot (FP) mode (approx 33 km s1^{-1}). We present here an analysis of the final calibrated CO data, performed with a more sophisticated modelling technique than hitherto, including a detailed analysis of the chemistry, and discuss similarities and differences with previous results. The inclusion of chemical modelling implies that atomic and molecular abundances are time-predicted by the chemistry. This provides one of the main differences with previous studies in which chemical abundances needed to be assumed as initial condition. The chemistry of the region is studied by simulating the conditions of the different known components of the KL region: chemical models for a hot core, a plateau and a ridge are coupled with an accelerated Lambda-iteration (ALI)radiative transfer model to predict line fluxes and profiles. We conclude that the CO transitions with 18<Jup<25 mainly arise from a hot core of diameter 0.02 pc and a density of 107^{7} cm3^{-3} rather from the plateau as previous studies had indicated.Comment: The paper contains 10 pages, 7 figures and 4 tables. MNRAS accepte

    Mid- and far-infrared fine-structure line sensitivities to hypothetical variability of the fine-structure constant

    Full text link
    Sensitivity coefficients to temporal variation of the fine-structure constant alpha for transitions between the fine-structure (FS) sub-levels of the ground states of C I, Si I, S I, Ti I, Fe I, N II, Fe II, O III, S III, Ar III, Fe III, Mg V, Ca V, Na VI, Fe VI, Mg VII, Si VII, Ca VII, Fe VII, and Si IX are calculated. These transitions lie in the mid- and far-infrared regions and can be observed in spectra of high-redshift quasars and infrared bright galaxies with active galactic nuclei. Using FS transitions to study alpha-variation over cosmological timescale allows to improve the limit on Δα/α|\Delta\alpha/\alpha| by several times as compared to contemporaneous optical observations (Δα/α<105|\Delta\alpha/\alpha| < 10^{-5}), and to suppress considerably systematic errors of the radial velocity measurements caused by the Doppler noise. Moreover, the far infrared lines can be observed at redshifts z > 10, far beyond the range accessible to optical observations (z < 4). We have derived a simple analytical expression which relates the FS intervals and the sensitivity of the FS transitions to the change of alpha.Comment: RevTeX4, 7 pages, submitted to PRA; v2: results for light ions (Z<10) have change

    Dust, Ice and Gas in Time (DIGIT) Herschel program first results: A full PACS-SED scan of the gas line emission in protostar DK Cha

    Get PDF
    DK Cha is an intermediate-mass star in transition from an embedded configuration to a star plus disk stage. We aim to study the composition and energetics of the circumstellar material during this pivotal stage. Using the Range Scan mode of PACS on the Herschel Space Observatory, we obtained a spectrum of DK Cha from 55 to 210 micron as part of the DIGIT Key Program. Almost 50 molecular and atomic lines were detected, many more than the 7 lines detected in ISO-LWS. Nearly the entire ladder of CO from J=14-13 to 38-37 (E_u/k = 4080 K), water from levels as excited as E_u/k = 843 K, and OH lines up to E_u/k = 290 K were detected. The continuum emission in our PACS SED scan matches the flux expected from a model consisting of a star, a surrounding disk of 0.03 Solar mass, and an envelope of a similar mass, supporting the suggestion that the object is emerging from its main accretion stage. Molecular, atomic, and ionic emission lines in the far-infrared reveal the outflow's influence on the envelope. The inferred hot gas can be photon-heated, but some emission could be due to C-shocks in the walls of the outflow cavity.Comment: 4 Page letter, To appear in A&A special issue on Hersche

    Gaia Early Data Release 3: Parallax bias versus magnitude, colour, and position

    Full text link
    Gaia Early Data Release 3 (Gaia EDR3) gives trigonometric parallaxes for nearly 1.5 billion sources. Inspection of the EDR3 data for sources identified as quasars reveals that their parallaxes are biased, that is systematically offset from the expected distribution around zero, by a few tens of microarcsec. We attempt to map the main dependencies of the parallax bias in EDR3. In principle this could provide a recipe for correcting the EDR3 parallaxes. For faint sources the quasars provide the most direct way to estimate parallax bias. In order to extend this to brighter sources and a broader range of colours, we use differential methods based on physical pairs (binaries) and sources in the Large Magellanic Cloud. The functional forms of the dependencies are explored by mapping the systematic differences between EDR3 and DR2 parallaxes. The parallax bias is found to depend in a non-trivial way on (at least) the magnitude, colour, and ecliptic latitude of the source. Different dependencies apply to the five- and six-parameter solutions in EDR3. While it is not possible to derive a definitive recipe for the parallax correction, we give tentative expressions to be used at the researcher's discretion and point out some possible paths towards future improvements.Comment: 32 pages, 30 figures. Submitted to Astronomy & Astrophysics. Revised version where typos in (A.3) have been corrected. For associated code, see https://www.cosmos.esa.int/web/gaia/edr3-code (code was not affected by the typos

    Herschel observations of extra-ordinary sources: Detection of Hydrogen Fluoride in absorption towards Orion~KL

    Get PDF
    We report a detection of the fundamental rotational transition of hydrogen fluoride in absorption towards Orion KL using Herschel/HIFI. After the removal of contaminating features associated with common molecules ("weeds"), the HF spectrum shows a P-Cygni profile, with weak redshifted emission and strong blue-shifted absorption, associated with the low-velocity molecular outflow. We derive an estimate of 2.9 x 10^13 cm^-2 for the HF column density responsible for the broad absorption component. Using our best estimate of the H2 column density within the low-velocity molecular outflow, we obtain a lower limit of ~1.6 x 10^-10 for the HF abundance relative to hydrogen nuclei, corresponding to 0.6% of the solar abundance of fluorine. This value is close to that inferred from previous ISO observations of HF J=2--1 absorption towards Sgr B2, but is in sharp contrast to the lower limit of 6 x 10^-9 derived by Neufeld et al. (2010) for cold, foreground clouds on the line of sight towards G10.6-0.4.Comment: 5 pages, 3 figures, paper to be published in the Herschel special issue of A&A letter

    Herschel observations of EXtra-Ordinary Sources: The Terahertz spectrum of Orion KL seen at high spectral resolution

    Get PDF
    We present the first high spectral resolution observations of Orion KL in the frequency ranges 1573.4 - 1702.8 GHz (band 6b) and 1788.4 - 1906.8 GHz (band 7b) obtained using the HIFI instrument on board the Herschel Space Observatory. We characterize the main emission lines found in the spectrum, which primarily arise from a range of components associated with Orion KL including the hot core, but also see widespread emission from components associated with molecular outflows traced by H2O, SO2, and OH. We find that the density of observed emission lines is significantly diminished in these bands compared to lower frequency Herschel/HIFI bands.Comment: Accepted for publication in the Herschel HIFI special issue of Astronomy and Astrophysics Letters, 5 pages, 3 figure

    <i>Gaia</i> Data Release 1. Summary of the astrometric, photometric, and survey properties

    Get PDF
    Context. At about 1000 days after the launch of Gaia we present the first Gaia data release, Gaia DR1, consisting of astrometry and photometry for over 1 billion sources brighter than magnitude 20.7. Aims. A summary of Gaia DR1 is presented along with illustrations of the scientific quality of the data, followed by a discussion of the limitations due to the preliminary nature of this release. Methods. The raw data collected by Gaia during the first 14 months of the mission have been processed by the Gaia Data Processing and Analysis Consortium (DPAC) and turned into an astrometric and photometric catalogue. Results. Gaia DR1 consists of three components: a primary astrometric data set which contains the positions, parallaxes, and mean proper motions for about 2 million of the brightest stars in common with the HIPPARCOS and Tycho-2 catalogues – a realisation of the Tycho-Gaia Astrometric Solution (TGAS) – and a secondary astrometric data set containing the positions for an additional 1.1 billion sources. The second component is the photometric data set, consisting of mean G-band magnitudes for all sources. The G-band light curves and the characteristics of ∼3000 Cepheid and RR-Lyrae stars, observed at high cadence around the south ecliptic pole, form the third component. For the primary astrometric data set the typical uncertainty is about 0.3 mas for the positions and parallaxes, and about 1 mas yr−1 for the proper motions. A systematic component of ∼0.3 mas should be added to the parallax uncertainties. For the subset of ∼94 000 HIPPARCOS stars in the primary data set, the proper motions are much more precise at about 0.06 mas yr−1. For the secondary astrometric data set, the typical uncertainty of the positions is ∼10 mas. The median uncertainties on the mean G-band magnitudes range from the mmag level to ∼0.03 mag over the magnitude range 5 to 20.7. Conclusions. Gaia DR1 is an important milestone ahead of the next Gaia data release, which will feature five-parameter astrometry for all sources. Extensive validation shows that Gaia DR1 represents a major advance in the mapping of the heavens and the availability of basic stellar data that underpin observational astrophysics. Nevertheless, the very preliminary nature of this first Gaia data release does lead to a number of important limitations to the data quality which should be carefully considered before drawing conclusions from the data
    corecore