298 research outputs found

    The mysterious eruption of V838 Mon

    Full text link
    V838 Mon is marking one of the most mysterious stellar outbursts on record. The spectral energy distribution of the progenitor resembles an under-luminous F main sequence star (at V=15.6 mag), that erupted into a cool supergiant following a complex and multi-maxima lightcurve (peaking at V=6.7 mag). The outburst spectrum show BaII, LiI and lines of several s-elements, with wide P-Cyg profiles and a moderate and retracing emission in the Balmer lines. A light-echo discovered expanding around the object helped to constrain the distance (d=790+/-30 pc), providing M_V=+4.45 in quiescence and M_V=-4.35 at optical maximum (somewhat dependent on the still uncertain E(B-V)=0.5 reddening). The general outburst trend is toward lower temperatures and larger luminosities, and continuing so at the time of writing. The object properties conflict with a classification within already existing categories: the progenitor was not on a post-AGB track and thus the similarities with the born-again AGB stars FG Sge, V605 Aql and Sakurai's object are limited to the cool giant spectrum at maximum; the cool spectrum, the moderate wind velocity (500 km/sec and progressively reducing) and the monotonic decreasing of the low ionization condition argues against a classical nova scenario. The closest similarity is with a star that erupted into an M-type supergiant discovered in M31 by Rich et al. (1989), that became however much brighter by peaking at M_V=-9.95, and with V4332 Sgr that too erupted into an M-type giant (Martini et al. 1999) and that attained a lower luminosity, closer to that of V838 Mon. M31-RedVar, V4332 Sgr and V838 Mon could be manifestations of the same and new class of astronomical objects.Comment: A&A, in pres

    Asiago eclipsing binaries program. I. V432 Aur

    Full text link
    The orbit and physical parameters of the previously unsolved eclipsing binary V432 Aur, discovered by Hipparcos, have been derived with errors better than 1% from extensive Echelle spectroscopy and B, V photometry. Synthetic spectral analysis of both components has been performed, yielding T_eff and log g in close agreement with the orbital solution, a metallicity [Z/Z_sun]=-0.60 and rotational synchronization for both components. Direct comparison on the theoretical L, T_eff plane with the Padova evolutionary tracks and isochrones for the masses of the two components (1.22 and 1.08 M_sun) provides a perfect match and a 3.75 Gyr age. The more massive and cooler component is approaching the base of the giant branch and displays a probable pulsation activity with an amplitude of Delta V = 0.075 mag and Delta rad.vel. = 1.5 km/sec. With a T_eff = 6080 K it falls to the red of the nearby instability strip populated by delta Sct and gamma Dor types of pulsating variables. Orbital modeling reveals a large and bright surface spot on it. The pulsations activity and the large spot(s) suggest the presence of macro-turbulent motions in its atmosphere. They reflect in a line broadening that at cursory inspection could be taken as indication of a rotation faster than synchronization, something obviously odd for an old, expanding star.Comment: A&A, 11 pages, accepted Jan 7, 200

    Experimental Evaluation of Russian Anode Layer Thrusters

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/76973/1/AIAA-1994-3010-800.pd

    Spectroscopic survey of the Galaxy with Gaia I. Design and performance of the Radial Velocity Spectrometer

    Get PDF
    The definition and optimisation studies for the Gaia satellite spectrograph, the Radial Velocity Spectrometer (RVS), converged in late 2002 with the adoption of the instrument baseline. This paper reviews the characteristics of the selected configuration and presents its expected performance. The RVS is a 2.0 by 1.6 degree integral field spectrograph, dispersing the light of all sources entering its field of view with a resolving power R=11 500 over the wavelength range [848, 874] nm. The RVS will continuously and repeatedly scan the sky during the 5 years of the Gaia mission. On average, each source will be observed 102 times over this period. The RVS will collect the spectra of about 100-150 million stars up to magnitude V~17-18. At the end of the mission, the RVS will provide radial velocities with precisions of ~2 km/s at V=15 and \~15-20 km/s at V=17, for a solar metallicity G5 dwarf. The RVS will also provide rotational velocities, with precisions (at the end of the mission) for late type stars of sigma_vsini ~5 km/s at V~15 as well as atmospheric parameters up to V~14-15. The individual abundances of elements such as Silicon and Magnesium, vital for the understanding of Galactic evolution, will be obtained up to V~12-13. Finally, the presence of the 862.0 nm Diffuse Interstellar Band (DIB) in the RVS wavelength range will make it possible to derive the three dimensional structure of the interstellar reddening.Comment: 17 pages, 9 figures, accepted for publication in MNRAS. Fig. 1,2,4,5, 6 in degraded resolution; available in full resolution at http://blackwell-synergy.com/links/doi/10.1111/j.1365-2966.2004.08282.x/pd

    Discovery of a bipolar and highly variable mass outflow from the symbiotic binary StHa 190

    Get PDF
    A highly and rapidly variable bipolar mass outflow from StHa 190 has been discovered, the first time in a yellow symbiotic star. Permitted emission lines are flanked by symmetrical jet features and multi-component P-Cyg profiles, with velocities up to 300 km/sec. Given the high orbital inclination of the binary, if the jets leave the system nearly perpendicular to the orbital plane, the de-projected velocity equals or exceeds the escape velocity (1000 km/sec). StHa190 looks quite peculiar in many other respects: the hot component is an O-type sub-dwarf without an accretion disk or a veiling nebular continuum and the cool component is a G7 III star rotating at a spectacular 105 km/sec unseen by a large margin in field G giants.Comment: Letter to the Editor, Astron.Astrophys, in pres

    Micrometeoroid Events in LISA Pathfinder

    Get PDF
    The zodiacal dust complex, a population of dust and small particles that pervades the Solar System, provides important insight into the formation and dynamics of planets, comets, asteroids, and other bodies. Here we present a new set of data obtained using a novel technique: direct measurements of momentum transfer to a spacecraft from individual particle impacts. This technique is made possible by the extreme precision of the instruments flown on the LISA Pathfinder spacecraft, a technology demonstrator for a future space-based gravitational wave observatory that operated near the first Sun-Earth Lagrange point from early 2016 through Summer of 2017. Using a simple model of the impacts and knowledge of the control system, we show that it is possible to detect impacts and measure properties such as the transferred momentum (related to the particle's mass and velocity), direction of travel, and location of impact on the spacecraft. In this paper, we present the results of a systematic search for impacts during 4348 hours of Pathfinder data. We report a total of 54 candidates with momenta ranging from 0.2μNs\,\mu\textrm{Ns} to 230μNs\,\mu\textrm{Ns}. We furthermore make a comparison of these candidates with models of micrometeoroid populations in the inner solar system including those resulting from Jupiter-family comets, Oort-cloud comets, Hailey-type comets, and Asteroids. We find that our measured population is consistent with a population dominated by Jupiter-family comets with some evidence for a smaller contribution from Hailey-type comets. This is in agreement with consensus models of the zodiacal dust complex in the momentum range sampled by LISA Pathfinder.Comment: 22 pages, 14 figures, accepted in Ap

    <i>Gaia</i> Data Release 1. Summary of the astrometric, photometric, and survey properties

    Get PDF
    Context. At about 1000 days after the launch of Gaia we present the first Gaia data release, Gaia DR1, consisting of astrometry and photometry for over 1 billion sources brighter than magnitude 20.7. Aims. A summary of Gaia DR1 is presented along with illustrations of the scientific quality of the data, followed by a discussion of the limitations due to the preliminary nature of this release. Methods. The raw data collected by Gaia during the first 14 months of the mission have been processed by the Gaia Data Processing and Analysis Consortium (DPAC) and turned into an astrometric and photometric catalogue. Results. Gaia DR1 consists of three components: a primary astrometric data set which contains the positions, parallaxes, and mean proper motions for about 2 million of the brightest stars in common with the HIPPARCOS and Tycho-2 catalogues – a realisation of the Tycho-Gaia Astrometric Solution (TGAS) – and a secondary astrometric data set containing the positions for an additional 1.1 billion sources. The second component is the photometric data set, consisting of mean G-band magnitudes for all sources. The G-band light curves and the characteristics of ∼3000 Cepheid and RR-Lyrae stars, observed at high cadence around the south ecliptic pole, form the third component. For the primary astrometric data set the typical uncertainty is about 0.3 mas for the positions and parallaxes, and about 1 mas yr−1 for the proper motions. A systematic component of ∼0.3 mas should be added to the parallax uncertainties. For the subset of ∼94 000 HIPPARCOS stars in the primary data set, the proper motions are much more precise at about 0.06 mas yr−1. For the secondary astrometric data set, the typical uncertainty of the positions is ∼10 mas. The median uncertainties on the mean G-band magnitudes range from the mmag level to ∼0.03 mag over the magnitude range 5 to 20.7. Conclusions. Gaia DR1 is an important milestone ahead of the next Gaia data release, which will feature five-parameter astrometry for all sources. Extensive validation shows that Gaia DR1 represents a major advance in the mapping of the heavens and the availability of basic stellar data that underpin observational astrophysics. Nevertheless, the very preliminary nature of this first Gaia data release does lead to a number of important limitations to the data quality which should be carefully considered before drawing conclusions from the data
    corecore