3,377 research outputs found

    Grounding knowledge and normative valuation in agent-based action and scientific commitment

    Get PDF
    Philosophical investigation in synthetic biology has focused on the knowledge-seeking questions pursued, the kind of engineering techniques used, and on the ethical impact of the products produced. However, little work has been done to investigate the processes by which these epistemological, metaphysical, and ethical forms of inquiry arise in the course of synthetic biology research. An attempt at this work relying on a particular area of synthetic biology will be the aim of this chapter. I focus on the reengineering of metabolic pathways through the manipulation and construction of small DNA-based devices and systems synthetic biology. Rather than focusing on the engineered products or ethical principles that result, I will investigate the processes by which these arise. As such, the attention will be directed to the activities of practitioners, their manipulation of tools, and the use they make of techniques to construct new metabolic devices. Using a science-in-practice approach, I investigate problems at the intersection of science, philosophy of science, and sociology of science. I consider how practitioners within this area of synthetic biology reconfigure biological understanding and ethical categories through active modelling and manipulation of known functional parts, biological pathways for use in the design of microbial machines to solve problems in medicine, technology, and the environment. We might describe this kind of problem-solving as relying on what Helen Longino referred to as “social cognition” or the type of scientific work done within what Hasok Chang calls “systems of practice”. My aim in this chapter will be to investigate the relationship that holds between systems of practice within metabolic engineering research and social cognition. I will attempt to show how knowledge and normative valuation are generated from this particular network of practitioners. In doing so, I suggest that the social nature of scientific inquiry is ineliminable to both knowledge acquisition and ethical evaluations

    A Comparison of U. S. and European University-Industry Relations in the Life Sciences

    Get PDF
    We draw on diverse data sets to compare the institutional organization of upstream life science research across the United States and Europe. Understanding cross-national differences in the organization of innovative labor in the life sciences requires attention to the structure and evolution of biomedical networks involving public research organizations (universities, government laboratories, nonprofit research institutes, and research hospitals), science-based biotechnology firms, and multinational pharmaceutical corporations. We use network visualization methods and correspondence analyses to demonstrate that innovative research in biomedicine has its origins in regional clusters in the United States and in European nations. But the scientific and organizational composition of these regions varies in consequential ways. In the United States, public research organizations and small firms conduct R&D across multiple therapeutic areas and stages of the development process. Ties within and across these regions link small firms and diverse public institutions, contributing to the development of a robust national network. In contrast, the European story is one of regional specialization with a less diverse group of public research organizations working in a smaller number of therapeutic areas. European institutes develop local connections to small firms working on similar scientific problems, while cross-national linkages of European regional clusters typically involve large pharmaceutical corporations. We show that the roles of large and small firms differ in the United States and Europe, arguing that the greater heterogeneity of the U. S. system is based on much closer integration of basic science and clinical development

    Knowledge politics and new converging technologies: a social epistemological perspective

    Get PDF
    The “new converging technologies” refers to the prospect of advancing the human condition by the integrated study and application of nanotechnology, biotechnology, information technology and the cognitive sciences - or “NBIC”. In recent years, it has loomed large, albeit with somewhat different emphases, in national science policy agendas throughout the world. This article considers the political and intellectual sources - both historical and contemporary - of the converging technologies agenda. Underlying it is a fluid conception of humanity that is captured by the ethically challenging notion of “enhancing evolution”

    Combined analysis of three genome-wide association studies on vWF and FVIII plasma levels

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Elevated levels of factor VIII (FVIII) and von Willebrand Factor (vWF) are well-established risk factors for cardiovascular diseases, in particular venous thrombosis. Although high, the heritability of these traits is poorly explained by the genetic factors known so far. The aim of this work was to identify novel single nucleotide polymorphisms (SNPs) that could influence the variability of these traits.</p> <p>Methods</p> <p>Three independent genome-wide association studies for vWF plasma levels and FVIII activity were conducted and their results were combined into a meta-analysis totalling 1,624 subjects.</p> <p>Results</p> <p>No single nucleotide polymorphism (SNP) reached the study-wide significance level of 1.12 × 10<sup>-7 </sup>that corresponds to the Bonferroni correction for the number of tested SNPs. Nevertheless, the recently discovered association of <it>STXBP5</it>, <it>STX2</it>, <it>TC2N </it>and <it>CLEC4M </it>genes with vWF levels and that of <it>SCARA5 </it>and STAB2 genes with FVIII levels were confirmed in this meta-analysis. Besides, among the fifteen novel SNPs showing promising association at p < 10<sup>-5 </sup>with either vWF or FVIII levels in the meta-analysis, one located in <it>ACCN1 </it>gene also showed weak association (<it>P </it>= 0.0056) with venous thrombosis in a sample of 1,946 cases and 1,228 controls.</p> <p>Conclusions</p> <p>This study has generated new knowledge on genomic regions deserving further investigations in the search for genetic factors influencing vWF and FVIII plasma levels, some potentially implicated in VT, as well as providing some supporting evidence of previously identified genes.</p

    Genes in the postgenomic era

    Get PDF
    We outline three very different concepts of the gene - 'instrumental', 'nominal', and 'postgenomic'. The instrumental gene has a critical role in the construction and interpretation of experiments in which the relationship between genotype and phenotype is explored via hybridization between organisms or directly between nucleic acid molecules. It also plays an important theoretical role in the foundations of disciplines such as quantitative genetics and population genetics. The nominal gene is a critical practical tool, allowing stable communication between bioscientists in a wide range of fields grounded in well-defined sequences of nucleotides, but this concept does not embody major theoretical insights into genome structure or function. The post-genomic gene embodies the continuing project of understanding how genome structure supports genome function, but with a deflationary picture of the gene as a structural unit. This final concept of the gene poses a significant challenge to conventional assumptions about the relationship between genome structure and function, and between genotype and phenotype

    Synthetic biology: Building the language for a new science brick by metaphorical brick

    Get PDF
    Changes in the biosciences and their relations to society over the last decades provide a unique opportunity to examine whether or not such changes leave traces in the language we use to talk about them. In this article we examine metaphors used in English-speaking press coverage to conceptualize a new type of (interdisciplinary) bioscience: synthetic biology. Findings show that three central metaphors were used between 2008 and May 2010. They exploit social and cultural knowledge about books, computers and engines and are linked to knowledge of three revolutions in science and society (the printing, information and industrial revolutions). These three central metaphors are connected to each other through the concepts of reading/writing, designing and mass production and they focus on science as a revolutionary process rather than on the end results or products of science. Overall, we observed the use of a complex bricolage of mixed metaphors and chains of metaphors that root synthetic biology in historical events and achievements, while at the same time extolling its promises for the future. © 2011 Copyright Taylor and Francis Group, LLC

    Single hadron response measurement and calorimeter jet energy scale uncertainty with the ATLAS detector at the LHC

    Get PDF
    The uncertainty on the calorimeter energy response to jets of particles is derived for the ATLAS experiment at the Large Hadron Collider (LHC). First, the calorimeter response to single isolated charged hadrons is measured and compared to the Monte Carlo simulation using proton-proton collisions at centre-of-mass energies of sqrt(s) = 900 GeV and 7 TeV collected during 2009 and 2010. Then, using the decay of K_s and Lambda particles, the calorimeter response to specific types of particles (positively and negatively charged pions, protons, and anti-protons) is measured and compared to the Monte Carlo predictions. Finally, the jet energy scale uncertainty is determined by propagating the response uncertainty for single charged and neutral particles to jets. The response uncertainty is 2-5% for central isolated hadrons and 1-3% for the final calorimeter jet energy scale.Comment: 24 pages plus author list (36 pages total), 23 figures, 1 table, submitted to European Physical Journal

    Measurement of the cross-section and charge asymmetry of WW bosons produced in proton-proton collisions at s=8\sqrt{s}=8 TeV with the ATLAS detector

    Get PDF
    This paper presents measurements of the W+μ+νW^+ \rightarrow \mu^+\nu and WμνW^- \rightarrow \mu^-\nu cross-sections and the associated charge asymmetry as a function of the absolute pseudorapidity of the decay muon. The data were collected in proton--proton collisions at a centre-of-mass energy of 8 TeV with the ATLAS experiment at the LHC and correspond to a total integrated luminosity of 20.2~\mbox{fb^{-1}}. The precision of the cross-section measurements varies between 0.8% to 1.5% as a function of the pseudorapidity, excluding the 1.9% uncertainty on the integrated luminosity. The charge asymmetry is measured with an uncertainty between 0.002 and 0.003. The results are compared with predictions based on next-to-next-to-leading-order calculations with various parton distribution functions and have the sensitivity to discriminate between them.Comment: 38 pages in total, author list starting page 22, 5 figures, 4 tables, submitted to EPJC. All figures including auxiliary figures are available at https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/STDM-2017-13
    corecore