54 research outputs found

    Gran Telescopio Canarias OSIRIS Transiting Exoplanet Atmospheric Survey: Detection of potassium in XO-2b from narrowband spectrophotometry

    Get PDF
    We present Gran Telescopio Canarias (GTC) optical transit narrow-band photometry of the hot-Jupiter exoplanet XO-2b using the OSIRIS instrument. This unique instrument has the capabilities to deliver high cadence narrow-band photometric lightcurves, allowing us to probe the atmospheric composition of hot Jupiters from the ground. The observations were taken during three transit events which cover four wavelengths at spectral resolutions near 500, necessary for observing atmospheric features, and have near-photon limited sub-mmag precisions. Precision narrow-band photometry on a large aperture telescope allows for atmospheric transmission spectral features to be observed for exoplanets around much fainter stars than those of the well studied targets HD209458b and HD189733b, providing access to the majority of known transiting planets. For XO-2b, we measure planet-to-star radius contrasts of R_pl/R_star=0.10508+/-0.00052 at 6792 Ang, 0.10640+/-0.00058 at 7582 Ang, and 0.10686+/-0.00060 at 7664.9 Ang, and 0.10362+/-0.00051 at 8839 Ang. These measurements reveal significant spectral features at two wavelengths, with an absorption level of 0.067+/-0.016% at 7664.9 Ang due to atmospheric potassium in the line core (a 4.1-sigma significance level), and an absorption level of 0.058+/-0.016% at 7582 Ang, (a 3.6-sigma significance level). When comparing our measurements to hot-Jupiter atmospheric models, we find good agreement with models which are dominated in the optical by alkali metals. This is the first evidence for potassium in an extrasolar planet, an element that has long been theorized along with sodium to be a dominant source of opacity at optical wavelengths for hot Jupiters.Comment: 11 pages, 6 figures, accepted in A&A, minor changes to wording, primarily section 4.2, and the title has also been slightly modifie

    Disequilibrium Carbon, Oxygen, and Nitrogen Chemistry in the Atmospheres of HD 189733b and HD 209458b

    Full text link
    We have developed 1-D photochemical and thermochemical kinetics and diffusion models for the transiting exoplanets HD 189733b and HD 209458b to study the effects of disequilibrium chemistry on the atmospheric composition of "hot Jupiters." Here we investigate the coupled chemistry of neutral carbon, hydrogen, oxygen, and nitrogen species, and we compare the model results with existing transit and eclipse observations. We find that the vertical profiles of molecular constituents are significantly affected by transport-induced quenching and photochemistry, particularly on cooler HD 189733b; however, the warmer stratospheric temperatures on HD 209458b can help maintain thermochemical equilibrium and reduce the effects of disequilibrium chemistry. For both planets, the methane and ammonia mole fractions are found to be enhanced over their equilibrium values at pressures of a few bar to less than a mbar due to transport-induced quenching, but CH4 and NH3 are photochemically removed at higher altitudes. Atomic species, unsaturated hydrocarbons (particularly C2H2), some nitriles (particularly HCN), and radicals like OH, CH3, and NH2 are enhanced overequilibrium predictions because of quenching and photochemistry. In contrast, CO, H2O, N2, and CO2 more closely follow their equilibrium profiles, except at pressures < 1 microbar, where CO, H2O, and N2 are photochemically destroyed and CO2 is produced before its eventual high-altitude destruction. The enhanced abundances of HCN, CH4, and NH3 in particular are expected to affect the spectral signatures and thermal profiles HD 189733b and other, relatively cool, close-in transiting exoplanets. We examine the sensitivity of our results to the assumed temperature structure and eddy diffusion coefficientss and discuss further observational consequences of these models.Comment: 40 pages, 16 figures, accepted for publication in Astrophysical Journa

    GTC OSIRIS transiting exoplanet atmospheric survey: detection of sodium in XO-2b from differential long-slit spectroscopy

    Get PDF
    We present two transits of the hot-Jupiter exoplanet XO-2b using the Gran Telescopio Canarias (GTC). The time series observations were performed using long-slit spectroscopy of XO-2 and a nearby reference star with the OSIRIS instrument, enabling differential specrophotometric transit lightcurves capable of measuring the exoplanet's transmission spectrum. Two optical low-resolution grisms were used to cover the optical wavelength range from 3800 to 9300{\AA}. We find that sub-mmag level slit losses between the target and reference star prevent full optical transmission spectra from being constructed, limiting our analysis to differential absorption depths over ~1000{\AA} regions. Wider long slits or multi-object grism spectroscopy with wide masks will likely prove effective in minimising the observed slit-loss trends. During both transits, we detect significant absorption in the planetary atmosphere of XO-2b using a 50{\AA} bandpass centred on the Na I doublet, with absorption depths of Delta(R_pl/R_star)^2=0.049+/-0.017 % using the R500R grism and 0.047+/-0.011 % using the R500B grism (combined 5.2-sigma significance from both transits). The sodium feature is unresolved in our low-resolution spectra, with detailed modelling also likely ruling out significant line-wing absorption over an ~800{\AA} region surrounding the doublet. Combined with narrowband photometric measurements, XO-2b is the first hot Jupiter with evidence for both sodium and potassium present in the planet's atmosphere.Comment: 9 pages, 10 figures, 1 table, accepted for publication in MNRA

    Detection of a transit of the super-Earth 55 Cnc e with Warm Spitzer

    Get PDF
    We report on the detection of a transit of the super-Earth 55 Cnc e with warm Spitzer in IRAC's 4.5-micron band. Our MCMC analysis includes an extensive modeling of the systematic effects affecting warm Spitzer photometry, and yields a transit depth of 410 +- 63 ppm, which translates to a planetary radius of 2.08 +- 0.16 R_Earth as measured in IRAC 4.5-micron channel. A planetary mass of 7.81 +- 0.58 M_Earth is derived from an extensive set of radial-velocity data, yielding a mean planetary density of 4.8 +- 1.3 g cm-3. Thanks to the brightness of its host star (V = 6, K = 4), 55 Cnc e is a unique target for the thorough characterization of a super-Earth orbiting around a solar-type star.Comment: Accepted for publication in A&A on 31 July 2011. 9 pages, 7 figures and 3 tables. Minor changes. The revised version includes a baseline models comparison and a new figure presenting the spatially- and time-dependent terms of the model function used in Eq.

    Methane in the atmosphere of the transiting hot Neptune GJ436b?

    Get PDF
    We present an analysis of seven primary transit observations of the hot Neptune GJ436b at 3.6, 4.5 and 8 μ8~\mum obtained with the Infrared Array Camera (IRAC) on the Spitzer Space Telescope. After correcting for systematic effects, we fitted the light curves using the Markov Chain Monte Carlo technique. Combining these new data with the EPOXI, HST and ground-based V,I,HV, I, H and KsK_s published observations, the range 0.510 μ0.5-10~\mum can be covered. Due to the low level of activity of GJ436, the effect of starspots on the combination of transits at different epochs is negligible at the accuracy of the dataset. Representative climate models were calculated by using a three-dimensional, pseudo-spectral general circulation model with idealised thermal forcing. Simulated transit spectra of GJ436b were generated using line-by-line radiative transfer models including the opacities of the molecular species expected to be present in such a planetary atmosphere. A new, ab-initio calculated, linelist for hot ammonia has been used for the first time. The photometric data observed at multiple wavelengths can be interpreted with methane being the dominant absorption after molecular hydrogen, possibly with minor contributions from ammonia, water and other molecules. No clear evidence of carbon monoxide and dioxide is found from transit photometry. We discuss this result in the light of a recent paper where photochemical disequilibrium is hypothesised to interpret secondary transit photometric data. We show that the emission photometric data are not incompatible with the presence of abundant methane, but further spectroscopic data are desirable to confirm this scenario.Comment: 19 pages, 10 figures, 1 table, Astrophysical Journal in pres

    Planetary Candidates Observed by Kepler. VIII. A Fully Automated Catalog With Measured Completeness and Reliability Based on Data Release 25

    Get PDF
    We present the Kepler Object of Interest (KOI) catalog of transiting exoplanets based on searching four years of Kepler time series photometry (Data Release 25, Q1-Q17). The catalog contains 8054 KOIs of which 4034 are planet candidates with periods between 0.25 and 632 days. Of these candidates, 219 are new and include two in multi-planet systems (KOI-82.06 and KOI-2926.05), and ten high-reliability, terrestrial-size, habitable zone candidates. This catalog was created using a tool called the Robovetter which automatically vets the DR25 Threshold Crossing Events (TCEs, Twicken et al. 2016). The Robovetter also vetted simulated data sets and measured how well it was able to separate TCEs caused by noise from those caused by low signal-to-noise transits. We discusses the Robovetter and the metrics it uses to sort TCEs. For orbital periods less than 100 days the Robovetter completeness (the fraction of simulated transits that are determined to be planet candidates) across all observed stars is greater than 85%. For the same period range, the catalog reliability (the fraction of candidates that are not due to instrumental or stellar noise) is greater than 98%. However, for low signal-to-noise candidates between 200 and 500 days around FGK dwarf stars, the Robovetter is 76.7% complete and the catalog is 50.5% reliable. The KOI catalog, the transit fits and all of the simulated data used to characterize this catalog are available at the NASA Exoplanet Archive.Comment: 61 pages, 23 Figures, 9 Tables, Accepted to The Astrophysical Journal Supplement Serie

    Immune Protection of Nonhuman Primates against Ebola Virus with Single Low-Dose Adenovirus Vectors Encoding Modified GPs

    Get PDF
    BACKGROUND: Ebola virus causes a hemorrhagic fever syndrome that is associated with high mortality in humans. In the absence of effective therapies for Ebola virus infection, the development of a vaccine becomes an important strategy to contain outbreaks. Immunization with DNA and/or replication-defective adenoviral vectors (rAd) encoding the Ebola glycoprotein (GP) and nucleoprotein (NP) has been previously shown to confer specific protective immunity in nonhuman primates. GP can exert cytopathic effects on transfected cells in vitro, and multiple GP forms have been identified in nature, raising the question of which would be optimal for a human vaccine. METHODS AND FINDINGS: To address this question, we have explored the efficacy of mutant GPs from multiple Ebola virus strains with reduced in vitro cytopathicity and analyzed their protective effects in the primate challenge model, with or without NP. Deletion of the GP transmembrane domain eliminated in vitro cytopathicity but reduced its protective efficacy by at least one order of magnitude. In contrast, a point mutation was identified that abolished this cytopathicity but retained immunogenicity and conferred immune protection in the absence of NP. The minimal effective rAd dose was established at 10(10) particles, two logs lower than that used previously. CONCLUSIONS: Expression of specific GPs alone vectored by rAd are sufficient to confer protection against lethal challenge in a relevant nonhuman primate model. Elimination of NP from the vaccine and dose reductions to 10(10) rAd particles do not diminish protection and simplify the vaccine, providing the basis for selection of a human vaccine candidate

    Infrared Transmission Spectroscopy of the Exoplanets HD209458b and XO-1b Using the Wide Field Camera-3 on the Hubble Space Telescope

    Get PDF
    Exoplanetary transmission spectroscopy in the near-infrared using the Hubble Space Telescope (HST) NICMOS is currently ambiguous because different observational groups claim different results from the same data, depending on their analysis methodologies. Spatial scanning with HST/WFC3 provides an opportunity to resolve this ambiguity. We here report WFC3 spectroscopy of the giant planets HD 209458b and XO-1b in transit, using spatial scanning mode for maximum photon-collecting efficiency. We introduce an analysis technique that derives the exoplanetary transmission spectrum without the necessity of explicitly decorrelating instrumental effects, and achieves nearly photon-limited precision even at the high flux levels collected in spatial scan mode. Our errors are within 6% (XO-1) and 26% (HD 209458b) of the photon-limit at a resolving power of λ/δλ ~ 70, and are better than 0.01% per spectral channel. Both planets exhibit water absorption of approximately 200 ppm at the water peak near 1.38 μm. Our result for XO-1b contradicts the much larger absorption derived from NICMOS spectroscopy. The weak water absorption we measure for HD 209458b is reminiscent of the weakness of sodium absorption in the first transmission spectroscopy of an exoplanet atmosphere by Charbonneau et al. Model atmospheres having uniformly distributed extra opacity of 0.012 cm2 g−1 account approximately for both our water measurement and the sodium absorption. Our results for HD 209458b support the picture advocated by Pont et al. in which weak molecular absorptions are superposed on a transmission spectrum that is dominated by continuous opacity due to haze and/or dust. However, the extra opacity needed for HD 209458b is grayer than for HD 189733b, with a weaker Rayleigh component

    Adenoviral gene transfer of angiostatic ATF-BPTI inhibits tumour growth

    Get PDF
    BACKGROUND: The outgrowth of new vessels – angiogenesis – in the tumour mass is considered to be a limiting factor of tumour growth. To inhibit the matrix lysis that is part of the tumour angiogenesis, we employed the chimeric protein mhATF-BPTI, composed of the receptor binding part of the urokinase (ATF) linked to an inhibitor of plasmin (BPTI). METHODS: For delivery, recombinant adenovirus encoding the transgene of interest was injected intravenously or locally into the tumour. The anti tumour effect of this compound was compared to that of human endostatin and of mhATF alone in two different rat bronchial carcinomas growing either as subcutaneous implants or as metastases. RESULTS: Significant inhibition of the tumour growth and decrease of the number of lung metastasis was achieved when the concentration of mhATF-BPTI at the tumour site was above 400 of ng / g tissue. This concentration could be achieved via production by the liver, only if permissive to the recombinant adenovirus. When the tumour cells could be transduced, local delivery of the vector was enough to obtain a response. In the case of metastasis, the capacity of the lung tissue to concentrate the encoded protein was essential to reach the required therapeutic levels. Further, endostatin or mhATF could not reproduce the effects of mhATF-BPTI, at similar concentrations (mhATF) and even at 10-fold higher concentration (endostatin). CONCLUSION: The ATF-BPTI was shown to inhibit tumour growth of different rat lung tumours when critical concentration was reached. In these tumour models, endostatin or ATF induce almost no tumour response
    corecore