19,573,769 research outputs found

    Measurement of the multi-TeV neutrino cross section with IceCube using Earth absorption

    Get PDF
    Neutrinos interact only very weakly, so they are extremely penetrating. However, the theoretical neutrino-nucleon interaction cross section rises with energy such that, at energies above 40 TeV, neutrinos are expected to be absorbed as they pass through the Earth. Experimentally, the cross section has been measured only at the relatively low energies (below 400 GeV) available at neutrino beams from accelerators \cite{Agashe:2014kda, Formaggio:2013kya}. Here we report the first measurement of neutrino absorption in the Earth, using a sample of 10,784 energetic upward-going neutrino-induced muons observed with the IceCube Neutrino Observatory. The flux of high-energy neutrinos transiting long paths through the Earth is attenuated compared to a reference sample that follows shorter trajectories through the Earth. Using a fit to the two-dimensional distribution of muon energy and zenith angle, we determine the cross section for neutrino energies between 6.3 TeV and 980 TeV, more than an order of magnitude higher in energy than previous measurements. The measured cross section is 1.300.19+0.211.30^{+0.21}_{-0.19} (stat.) 0.43+0.39^{+0.39}_{-0.43} (syst.) times the prediction of the Standard Model \cite{CooperSarkar:2011pa}, consistent with the expectation for charged and neutral current interactions. We do not observe a dramatic increase in the cross section, expected in some speculative models, including those invoking new compact dimensions \cite{AlvarezMuniz:2002ga} or the production of leptoquarks \cite{Romero:2009vu}.Comment: Preprint version of Nature paper 10.1038/nature2445

    Large-time Behavior of Solutions to the Inflow Problem of Full Compressible Navier-Stokes Equations

    Full text link
    Large-time behavior of solutions to the inflow problem of full compressible Navier-Stokes equations is investigated on the half line R+=(0,+)R^+ =(0,+\infty). The wave structure which contains four waves: the transonic(or degenerate) boundary layer solution, 1-rarefaction wave, viscous 2-contact wave and 3-rarefaction wave to the inflow problem is described and the asymptotic stability of the superposition of the above four wave patterns to the inflow problem of full compressible Navier-Stokes equations is proven under some smallness conditions. The proof is given by the elementary energy analysis based on the underlying wave structure. The main points in the proof are the degeneracies of the transonic boundary layer solution and the wave interactions in the superposition wave.Comment: 27 page

    Antimicrobials: a global alliance for optimizing their rational use in intra-abdominal infections (AGORA)

    Get PDF
    Intra-abdominal infections (IAI) are an important cause of morbidity and are frequently associated with poor prognosis, particularly in high-risk patients. The cornerstones in the management of complicated IAIs are timely effective source control with appropriate antimicrobial therapy. Empiric antimicrobial therapy is important in the management of intra-abdominal infections and must be broad enough to cover all likely organisms because inappropriate initial antimicrobial therapy is associated with poor patient outcomes and the development of bacterial resistance. The overuse of antimicrobials is widely accepted as a major driver of some emerging infections (such as C. difficile), the selection of resistant pathogens in individual patients, and for the continued development of antimicrobial resistance globally. The growing emergence of multi-drug resistant organisms and the limited development of new agents available to counteract them have caused an impending crisis with alarming implications, especially with regards to Gram-negative bacteria. An international task force from 79 different countries has joined this project by sharing a document on the rational use of antimicrobials for patients with IAIs. The project has been termed AGORA (Antimicrobials: A Global Alliance for Optimizing their Rational Use in Intra-Abdominal Infections). The authors hope that AGORA, involving many of the world's leading experts, can actively raise awareness in health workers and can improve prescribing behavior in treating IAIs

    Pseudorapidity distributions of charged hadrons in proton-lead collisions at root s(NN)=5:02 and 8.16 TeV

    Get PDF
    The pseudorapidity distributions of charged hadrons in proton-lead collisions at nucleon-nucleon center-of-mass energies root s(NN) = 5.02 and 8.16 TeV are presented. The measurements are based on data samples collected by the CMS experiment at the LHC. The number of primary charged hadrons produced in non-single-diffractive proton-lead collisions is determined in the pseudorapidity range vertical bar eta(lab)vertical bar vertical bar(vertical bar eta cm vertical bar) <0.5 are 17.1 +/- 0.01 (stat) +/- 0.59 (syst) and 20.10 +/- 0.01 (stat) +/- 0.5(syst) at root s(NN) = 5.02 and 8.16 TeV, respectively. The particle densities per participant nucleon are compared to similar measurements in proton-proton, proton-nucleus, and nucleus-nucleus collisions.Peer reviewe

    Search for light bosons in decays of the 125 GeV Higgs boson in proton-proton collisions at root s=8 TeV

    Get PDF
    Peer reviewe

    Search for dijet resonances in proton-proton collisions at root s=13 TeV and constraints on dark matter and other models

    Get PDF
    Correction: DOI:10.1016/j.physletb.2017.09.029Peer reviewe

    Search for new physics with dijet angular distributions in proton-proton collisions at root S = 13 TeV

    Get PDF
    Peer reviewe

    Measurement of the B-+/- Meson Nuclear Modification Factor in Pb-Pb Collisions at root s(NN)=5.02 TeV

    Get PDF
    Peer reviewe

    Search for a light pseudoscalar Higgs boson produced in association with bottom quarks in pp collisions at root s=8 TeV

    Get PDF
    Peer reviewe

    The Infrared Glow of First Stars

    Full text link
    Kashlinsky et al. (2005) find a significant cosmic infrared background fluctuation excess on angular scales >50 arcsec that cannot be explained by instrumental noise or local foregrounds. The excess has been tentatively attributed to emission from primordial very massive (PopIII) stars formed <200 Myr after the Big Bang. Using an evolutionary model motivated by independent observations and including various feedback processes, we find that PopIII stars can contribute <40% of the total background intensity (\nu J_\nu ~ 1-2 nW m^-2 sr^-1 in the 0.8-8 \mum range) produced by all galaxies (hosting both PopIII and PopII stars) at z>5. The infrared fluctuation excess is instead very precisely accounted by the clustering signal of galaxies at z>5, predominantly hosting PopII stars with masses and properties similar to the present ones.Comment: 4 pages, 2 figures, MNRAS in pres
    corecore