2,802 research outputs found

    Complexity of Strong Implementability

    Full text link
    We consider the question of implementability of a social choice function in a classical setting where the preferences of finitely many selfish individuals with private information have to be aggregated towards a social choice. This is one of the central questions in mechanism design. If the concept of weak implementation is considered, the Revelation Principle states that one can restrict attention to truthful implementations and direct revelation mechanisms, which implies that implementability of a social choice function is easy to check. For the concept of strong implementation, however, the Revelation Principle becomes invalid, and the complexity of deciding whether a given social choice function is strongly implementable has been open so far. In this paper, we show by using methods from polyhedral theory that strong implementability of a social choice function can be decided in polynomial space and that each of the payments needed for strong implementation can always be chosen to be of polynomial encoding length. Moreover, we show that strong implementability of a social choice function involving only a single selfish individual can be decided in polynomial time via linear programming

    Assessing Tolerance to Heavy-Metal Stress in Arabidopsis thaliana Seedlings

    Get PDF
    The deposited book chapter is a post-print version and has been submitted to peer review.The deposited book chapter version contains attached the supplementary materials within the pdf.This publication hasn't any creative commons license associated.The deposited book chapter is part of the book series: "Environmental Responses in Plants: Methods and Protocols" (pp.197-208) published by Springer.Heavy-metal soil contamination is one of the major abiotic stress factors that, by negatively affecting plant growth and development, severely limit agricultural productivity worldwide. Plants have evolved various tolerance and detoxification strategies in order to cope with heavy-metal toxicity while ensuring adequate supply of essential micronutrients at the whole-plant as well as cellular levels. Genetic studies in the model plant Arabidopsis thaliana have been instrumental in elucidating such mechanisms. The root assay constitutes a very powerful and simple method to assess heavy-metal stress tolerance in Arabidopsis seedlings. It allows the simultaneous determination of all the standard growth parameters affected by heavy-metal stress (primary root elongation, lateral root development, shoot biomass, and chlorophyll content) in a single experiment. Additionally, this protocol emphasizes the tips and tricks that become particularly useful when quantifying subtle alterations in tolerance to a given heavy-metal stress, when simultaneously pursuing a large number of plant lines, or when testing sensitivity to a wide range of heavy metals for a single line.Fundação para a Ciência e a Tecnologia grants: (EXPL/AGR-PRO/1013/2013, SFRH/BPD/44640/2008); GREEN-it "Bioresources for Sustainability": (UID/Multi/04551/2013).info:eu-repo/semantics/publishedVersio

    Clinical and functional effects of a deletion in a COOH-terminal lumenal loop of the skeletal muscle ryanodine receptor

    Get PDF
    We have identified a patient affected by a relatively severe form of central core disease (CCD), carrying a heterozygous deletion (amino acids 4863-4869) in the pore-forming region of the sarcoplasmic reticulum calcium release channel. The functional effect of this deletion was investigated (i) in lymphoblastoid cells from the affected patient and her mother, who was also found to harbour the mutation and (ii) in HEK293 cells expressing recombinant mutant channels. Lymphoblastoid cells carrying the RYR1 deletion exhibit an ‘unprompted' calcium release from intracellular stores, resulting in significantly smaller thapsigargin-sensitive intracellular Ca2+ stores, compared with lymphoblastoid cells from control individuals. Blocking the RYR1 with dantrolene restored the intracellular calcium stores to levels similar to those found in control cells. Single channel and [3H]ryanodine binding measurements of heterologously expressed mutant channels revealed a reduced ion conductance and loss of ryanodine binding and regulation by Ca2+. Heterologous expression of recombinant RYR1 peptides and analysis of their membrane topology demonstrate that the deleted amino acids are localized in the lumenal loop connecting membrane-spanning segments M8 and M10. We provide evidence that a deletion in the lumenal loop of RYR1alters channel function and causes CC

    Review of the BCI Competition IV

    Get PDF
    The BCI competition IV stands in the tradition of prior BCI competitions that aim to provide high quality neuroscientific data for open access to the scientific community. As experienced already in prior competitions not only scientists from the narrow field of BCI compete, but scholars with a broad variety of backgrounds and nationalities. They include high specialists as well as students. The goals of all BCI competitions have always been to challenge with respect to novel paradigms and complex data. We report on the following challenges: (1) asynchronous data, (2) synthetic, (3) multi-class continuous data, (4) session-to-session transfer, (5) directionally modulated MEG, (6) finger movements recorded by ECoG. As after past competitions, our hope is that winning entries may enhance the analysis methods of future BCIs.BMBF, 01IB001A, LOKI - Lernen zur Organisation komplexer Systeme der Informationsverarbeitung - Lernen im Kontext der SzenenanalyseBMBF, 01GQ0850, Bernstein Fokus Neurotechnologie - Nichtinvasive Neurotechnologie für Mensch-Maschine InteraktionEC/FP7/224631/EU/Tools for Brain-Computer Interaction/TOBIEC/FP7/216886/EU/Pattern Analysis, Statistical Modelling and Computational Learning 2/PASCAL2BMBF, 01GQ0420, Verbundprojekt: Bernstein-Zentrum für Neural Dynamics, Freiburg - CNDFBMBF, 01GQ0761, Bewegungsassoziierte Aktivierung - Dekodierung bewegungsassoziierter GehirnsignaleBMBF, 01GQ0762, Bewegungsassoziierte Aktivierung - Gehirn- und Maschinenlerne

    Dual-probe decoherence microscopy: Probing pockets of coherence in a decohering environment

    Get PDF
    We study the use of a pair of qubits as a decoherence probe of a non-trivial environment. This dual-probe configuration is modelled by three two-level-systems which are coupled in a chain in which the middle system represents an environmental two-level-system (TLS). This TLS resides within the environment of the qubits and therefore its coupling to perturbing fluctuations (i.e. its decoherence) is assumed much stronger than the decoherence acting on the probe qubits. We study the evolution of such a tripartite system including the appearance of a decoherence-free state (dark state) and non-Markovian behaviour. We find that all parameters of this TLS can be obtained from measurements of one of the probe qubits. Furthermore we show the advantages of two qubits in probing environments and the new dynamics imposed by a TLS which couples to two qubits at once.Comment: 29 pages, 10 figure

    Radiosensitization by BRAF inhibitor therapy—mechanism and frequency of toxicity in melanoma patients

    Get PDF
    This study shows radiosensitization by BRAF inhibitors in clinical practice and ex vivo by fluorescence in situ hybridization of chromosomal breaks. Nevertheless, radiotherapy with concomitant BRAF inhibitor therapy is feasible with an acceptable increase in toxicity. Vemurafenib is a more potent radiosensitizer than dabrafenib in both the patient study and the ex vivo experiment

    Molecular mechanisms and phenotypic variation in RYR1-related congenital myopathies

    Get PDF
    Dominant mutations in the skeletal muscle ryanodine receptor (RYR1) gene are well-recognized causes of both malignant hyperthermia susceptibility (MHS) and central core disease (CCD). More recently, recessive RYR1 mutations have been described in few congenital myopathy patients with variable pathology, including multi-minicores. Although a clinical overlap between patients with dominant and recessive RYR1 mutations exists, in most cases with recessive mutations the pattern of muscle weakness is remarkably different from that observed in dominant CCD. In order to characterize the spectrum of congenital myopathies associated with RYR1 mutations, we have investigated a cohort of 44 patients from 28 families with clinical and/or histopathological features suggestive of RYR1 involvement. We have identified 25 RYR1 mutations, 9 of them novel, including 12 dominant and 13 recessive mutations. With only one exception, dominant mutations were associated with a CCD phenotype, prominent cores and predominantly occurred in the RYR1 C-terminal exons 101 and 102. In contrast, the 13 recessive RYR1 mutations were distributed evenly along the entire RYR1 gene and were associated with a wide range of clinico-pathological phenotypes. Protein expression studies in nine cases suggested a correlation between specific mutations, RyR1 protein levels and resulting phenotype: in particular, whilst patients with dominant or recessive mutations associated with typical CCD phenotypes appeared to have normal RyR1 expression, individuals with more generalized weakness, multi-minicores and external ophthalmoplegia had a pronounced depletion of the RyR1 protein. The phenomenon of protein depletion was observed in some patients compound heterozygous for recessive mutations at the genomic level and silenced another allele in skeletal muscle, providing additional information on the mechanism of disease in these patients. Our data represent the most extensive study of RYR1-related myopathies and indicate complex genotype-phenotype correlations associated with mutations differentially affecting assembly and function of the RyR1 calcium release channe

    Single hadron response measurement and calorimeter jet energy scale uncertainty with the ATLAS detector at the LHC

    Get PDF
    The uncertainty on the calorimeter energy response to jets of particles is derived for the ATLAS experiment at the Large Hadron Collider (LHC). First, the calorimeter response to single isolated charged hadrons is measured and compared to the Monte Carlo simulation using proton-proton collisions at centre-of-mass energies of sqrt(s) = 900 GeV and 7 TeV collected during 2009 and 2010. Then, using the decay of K_s and Lambda particles, the calorimeter response to specific types of particles (positively and negatively charged pions, protons, and anti-protons) is measured and compared to the Monte Carlo predictions. Finally, the jet energy scale uncertainty is determined by propagating the response uncertainty for single charged and neutral particles to jets. The response uncertainty is 2-5% for central isolated hadrons and 1-3% for the final calorimeter jet energy scale.Comment: 24 pages plus author list (36 pages total), 23 figures, 1 table, submitted to European Physical Journal

    Observation of associated near-side and away-side long-range correlations in √sNN=5.02  TeV proton-lead collisions with the ATLAS detector

    Get PDF
    Two-particle correlations in relative azimuthal angle (Δϕ) and pseudorapidity (Δη) are measured in √sNN=5.02  TeV p+Pb collisions using the ATLAS detector at the LHC. The measurements are performed using approximately 1  μb-1 of data as a function of transverse momentum (pT) and the transverse energy (ΣETPb) summed over 3.1<η<4.9 in the direction of the Pb beam. The correlation function, constructed from charged particles, exhibits a long-range (2<|Δη|<5) “near-side” (Δϕ∼0) correlation that grows rapidly with increasing ΣETPb. A long-range “away-side” (Δϕ∼π) correlation, obtained by subtracting the expected contributions from recoiling dijets and other sources estimated using events with small ΣETPb, is found to match the near-side correlation in magnitude, shape (in Δη and Δϕ) and ΣETPb dependence. The resultant Δϕ correlation is approximately symmetric about π/2, and is consistent with a dominant cos⁡2Δϕ modulation for all ΣETPb ranges and particle pT

    Frequency Specific Cortical Dynamics During Motor Imagery Are Influenced by Prior Physical Activity

    Get PDF
    Motor imagery is often used inducing changes in electroencephalographic (EEG) signals for imagery-based brain-computer interfacing (BCI). A BCI is a device translating brain signals into control signals providing severely motor-impaired persons with an additional, non-muscular channel for communication and control. In the last years, there is increasing interest using BCIs also for healthy people in terms of enhancement or gaming. Most studies focusing on improving signal processing feature extraction and classification methods, but the performance of a BCI can also be improved by optimizing the user’s control strategies, e.g., using more vivid and engaging mental tasks for control. We used multichannel EEG to investigate neural correlates of a sports imagery task (playing tennis) compared to a simple motor imagery task (squeezing a ball). To enhance the vividness of both tasks participants performed a short physical exercise between two imagery sessions. EEG was recorded from 60 closely spaced electrodes placed over frontal, central, and parietal areas of 30 healthy volunteers divided in two groups. Whereas Group 1 (EG) performed a physical exercise between the two imagery sessions, Group 2 (CG) watched a landscape movie without physical activity. Spatiotemporal event-related desynchronization (ERD) and event-related synchronization (ERS) patterns during motor imagery (MI) tasks were evaluated. The results of the EG showed significant stronger ERD patterns in the alpha frequency band (8–13 Hz) during MI of tennis after training. Our results are in evidence with previous findings that MI in combination with motor execution has beneficial effects. We conclude that sports MI combined with an interactive game environment could be a future promising task in motor learning and rehabilitation improving motor functions in late therapy processes or support neuroplasticity
    corecore