398 research outputs found

    The electrical double layer for a fully asymmetric electrolyte around a spherical colloid: an integral equation study

    Full text link
    The hypernetted chain/mean spherical approximation (HNC/MSA) integral equation is obtained and solved numerically for a totally asymmetric primitive model electrolyte around a spherical macroparticle. The ensuing radial distribution functions show a very good agreement when compared to our Monte Carlo and molecular dynamics simulations for spherical geometry and with respect to previous anisotropic reference HNC calculations in the planar limit. We report an analysis of the potential vs charge relationship, radial distribution functions, mean electrostatic potential and cumulative reduced charge for representative cases of 1:1 and 2:2 salts with a size asymmetry ratio of 2. Our results are collated with those of the Modified Gouy-Chapman (MGC) and unequal radius Modified Gouy-Chapman (URMGC) theories and with those of HNC/MSA in the restricted primitive model (RPM) to assess the importance of size asymmetry effects. One of the most striking characteristics found is that,\textit{contrary to the general belief}, away from the point of zero charge the properties of an asymmetric electrical double layer (EDL) are not those corresponding to a symmetric electrolyte with the size and charge of the counterion, i.e. \textit{counterions do not always dominate}. This behavior suggests the existence of a new phenomenology in the EDL that genuinely belongs to a more realistic size-asymmetric model where steric correlations are taken into account consistently. Such novel features can not be described by traditional mean field theories like MGC, URMGC or even by enhanced formalisms, like HNC/MSA, if they are based on the RPM.Comment: 29 pages, 13 figure

    DNA condensation and redissolution: Interaction between overcharged DNA molecules

    Full text link
    The effective DNA-DNA interaction force is calculated by computer simulations with explicit tetravalent counterions and monovalent salt. For overcharged DNA molecules, the interaction force shows a double-minimum structure. The positions and depths of these minima are regulated by the counterion density in the bulk. Using two-dimensional lattice sum and free energy perturbation theories, the coexisting phases for DNA bundles are calculated. A DNA-condensation and redissolution transition and a stable mesocrystal with an intermediate lattice constant for high counterion concentration are obtained.Comment: 26 pages, 10 figure

    Attraction between DNA molecules mediated by multivalent ions

    Get PDF
    The effective force between two parallel DNA molecules is calculated as a function of their mutual separation for different valencies of counter- and salt ions and different salt concentrations. Computer simulations of the primitive model are used and the shape of the DNA molecules is accurately modelled using different geometrical shapes. We find that multivalent ions induce a significant attraction between the DNA molecules whose strength can be tuned by the averaged valency of the ions. The physical origin of the attraction is traced back either to electrostatics or to entropic contributions. For multivalent counter- and monovalent salt ions, we find a salt-induced stabilization effect: the force is first attractive but gets repulsive for increasing salt concentration. Furthermore, we show that the multivalent-ion-induced attraction does not necessarily correlate with DNA overcharging.Comment: 51 pages and 13 figure

    Whole-genome phylogenies of the family Bacillaceae and expansion of the sigma factor gene family in the Bacillus cereus species-group

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The <it>Bacillus cereus </it><it>sensu lato </it>group consists of six species (<it>B. anthracis</it>, <it>B. cereus</it>, <it>B. mycoides</it>, <it>B. pseudomycoides</it>, <it>B. thuringiensis</it>, and <it>B. weihenstephanensis</it>). While classical microbial taxonomy proposed these organisms as distinct species, newer molecular phylogenies and comparative genome sequencing suggests that these organisms should be classified as a single species (thus, we will refer to these organisms collectively as the <it>Bc </it>species-group). How do we account for the underlying similarity of these phenotypically diverse microbes? It has been established for some time that the most rapidly evolving and evolutionarily flexible portions of the bacterial genome are regulatory sequences and transcriptional networks. Other studies have suggested that the sigma factor gene family of these organisms has diverged and expanded significantly relative to their ancestors; sigma factors are those portions of the bacterial transcriptional apparatus that control RNA polymerase recognition for promoter selection. Thus, examining sigma factor divergence in these organisms would concurrently examine both regulatory sequences and transcriptional networks important for divergence. We began this examination by comparison to the sigma factor gene set of <it>B. subtilis</it>.</p> <p>Results</p> <p>Phylogenetic analysis of the <it>Bc </it>species-group utilizing 157 single-copy genes of the family <it>Bacillaceae </it>suggests that several taxonomic revisions of the genus <it>Bacillus </it>should be considered. Within the <it>Bc </it>species-group there is little indication that the currently recognized species form related sub-groupings, suggesting that they are members of the same species. The sigma factor gene family encoded by the <it>Bc </it>species-group appears to be the result of a dynamic gene-duplication and gene-loss process that in previous analyses underestimated the true heterogeneity of the sigma factor content in the <it>Bc </it>species-group.</p> <p>Conclusions</p> <p>Expansion of the sigma factor gene family appears to have preferentially occurred within the extracytoplasmic function (ECF) sigma factor genes, while the primary alternative (PA) sigma factor genes are, in general, highly conserved with those found in <it>B. subtilis</it>. Divergence of the sigma-controlled transcriptional regulons among various members of the <it>Bc </it>species-group likely has a major role in explaining the diversity of phenotypic characteristics seen in members of the <it>Bc </it>species-group.</p

    Neuroinflammation, Mast Cells, and Glia: Dangerous Liaisons

    Get PDF
    The perspective of neuroinflammation as an epiphenomenon following neuron damage is being replaced by the awareness of glia and their importance in neural functions and disorders. Systemic inflammation generates signals that communicate with the brain and leads to changes in metabolism and behavior, with microglia assuming a pro-inflammatory phenotype. Identification of potential peripheral-to-central cellular links is thus a critical step in designing effective therapeutics. Mast cells may fulfill such a role. These resident immune cells are found close to and within peripheral nerves and in brain parenchyma/meninges, where they exercise a key role in orchestrating the inflammatory process from initiation through chronic activation. Mast cells and glia engage in crosstalk that contributes to accelerate disease progression; such interactions become exaggerated with aging and increased cell sensitivity to stress. Emerging evidence for oligodendrocytes, independent of myelin and support of axonal integrity, points to their having strong immune functions, innate immune receptor expression, and production/response to chemokines and cytokines that modulate immune responses in the central nervous system while engaging in crosstalk with microglia and astrocytes. In this review, we summarize the findings related to our understanding of the biology and cellular signaling mechanisms of neuroinflammation, with emphasis on mast cell-glia interactions

    Canonical moments and random spectral measures

    Full text link
    We study some connections between the random moment problem and the random matrix theory. A uniform draw in a space of moments can be lifted into the spectral probability measure of the pair (A,e) where A is a random matrix from a classical ensemble and e is a fixed unit vector. This random measure is a weighted sampling among the eigenvalues of A. We also study the large deviations properties of this random measure when the dimension of the matrix grows. The rate function for these large deviations involves the reversed Kullback information.Comment: 32 pages. Revised version accepted for publication in Journal of Theoretical Probabilit

    A Qualitative View of Drug Use Behaviors of Mexican Male Injection Drug Users Deported from the United States

    Get PDF
    Deportees are a hidden yet highly vulnerable and numerous population. Significantly, little data exists about the substance use and deportation experiences of Mexicans deported from the United States. This pilot qualitative study describes illicit drug use behaviors among 24 Mexico-born male injection drug users (IDUs), ≥18 years old, residing in Tijuana, Mexico who self-identified as deportees from the United States. In-person interviews were conducted in Tijuana, Mexico in 2008. Content analysis of interview transcripts identified major themes in participants’ experiences. Few participants had personal or family exposures to illicit drugs prior to their first U.S. migration. Participants reported numerous deportations. Social (i.e., friends/family, post-migration stressors) and environmental factors (e.g., drug availability) were perceived to contribute to substance use initiation in the U.S. Drugs consumed in the United States included marijuana, heroin, cocaine, methamphetamine, and crack. More than half of men were IDUs prior to deportation. Addiction and justice system experiences reportedly contributed to deportation. After deportation, several men injected new drugs, primarily heroin or methamphetamine, or a combination of both drugs. Many men perceived an increase in their substance use after deportation and reported shame and loss of familial social and economic support. Early intervention is needed to stem illicit drug use in Mexican migrant youths. Binational cooperation around migrant health issues is warranted. Migrant-oriented programs may expand components that address mental health and drug use behaviors in an effort to reduce transmission of blood-borne infections. Special considerations are merited for substance users in correctional systems in the United States and Mexico, as well as substance users in United States immigration detention centers. The health status and health behaviors of deportees are likely to impact receiving Mexican communities. Programs that address health, social, and economic issues may aid deportees in resettling in Mexico

    A phylogenetic classification of the world’s tropical forests

    Get PDF
    Knowledge about the biogeographic affinities of the world’s tropical forests helps to better understand regional differences in forest structure, diversity, composition and dynamics. Such understanding will enable anticipation of region specific responses to global environmental change. Modern phylogenies, in combination with broad coverage of species inventory data, now allow for global biogeographic analyses that take species evolutionary distance into account. Here we present the first classification of the world’s tropical forests based on their phylogenetic similarity. We identify five principal floristic regions and their floristic relationships: (1) Indo-Pacific, (2) Subtropical, (3) African, (4) American, and (5) Dry forests. Our results do not support the traditional Neo- versus Palaeo-tropical forest division, but instead separate the combined American and African forests from their Indo-Pacific counterparts. We also find indications for the existence of a global dry forest region, with representatives in America, Africa, Madagascar and India. Additionally, a northern hemisphere Subtropical forest region was identified with representatives in Asia and America, providing support for a link between Asian and American northern hemisphere forests

    A genomic catalog of Earth’s microbiomes

    Get PDF
    The reconstruction of bacterial and archaeal genomes from shotgun metagenomes has enabled insights into the ecology and evolution of environmental and host-associated microbiomes. Here we applied this approach to >10,000 metagenomes collected from diverse habitats covering all of Earth’s continents and oceans, including metagenomes from human and animal hosts, engineered environments, and natural and agricultural soils, to capture extant microbial, metabolic and functional potential. This comprehensive catalog includes 52,515 metagenome-assembled genomes representing 12,556 novel candidate species-level operational taxonomic units spanning 135 phyla. The catalog expands the known phylogenetic diversity of bacteria and archaea by 44% and is broadly available for streamlined comparative analyses, interactive exploration, metabolic modeling and bulk download. We demonstrate the utility of this collection for understanding secondary-metabolite biosynthetic potential and for resolving thousands of new host linkages to uncultivated viruses. This resource underscores the value of genome-centric approaches for revealing genomic properties of uncultivated microorganisms that affect ecosystem processes
    corecore