The effective force between two parallel DNA molecules is calculated as a
function of their mutual separation for different valencies of counter- and
salt ions and different salt concentrations. Computer simulations of the
primitive model are used and the shape of the DNA molecules is accurately
modelled using different geometrical shapes. We find that multivalent ions
induce a significant attraction between the DNA molecules whose strength can be
tuned by the averaged valency of the ions. The physical origin of the
attraction is traced back either to electrostatics or to entropic
contributions. For multivalent counter- and monovalent salt ions, we find a
salt-induced stabilization effect: the force is first attractive but gets
repulsive for increasing salt concentration. Furthermore, we show that the
multivalent-ion-induced attraction does not necessarily correlate with DNA
overcharging.Comment: 51 pages and 13 figure