18 research outputs found

    Minimal information for studies of extracellular vesicles 2018 (MISEV2018):a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines

    Get PDF
    The last decade has seen a sharp increase in the number of scientific publications describing physiological and pathological functions of extracellular vesicles (EVs), a collective term covering various subtypes of cell-released, membranous structures, called exosomes, microvesicles, microparticles, ectosomes, oncosomes, apoptotic bodies, and many other names. However, specific issues arise when working with these entities, whose size and amount often make them difficult to obtain as relatively pure preparations, and to characterize properly. The International Society for Extracellular Vesicles (ISEV) proposed Minimal Information for Studies of Extracellular Vesicles (“MISEV”) guidelines for the field in 2014. We now update these “MISEV2014” guidelines based on evolution of the collective knowledge in the last four years. An important point to consider is that ascribing a specific function to EVs in general, or to subtypes of EVs, requires reporting of specific information beyond mere description of function in a crude, potentially contaminated, and heterogeneous preparation. For example, claims that exosomes are endowed with exquisite and specific activities remain difficult to support experimentally, given our still limited knowledge of their specific molecular machineries of biogenesis and release, as compared with other biophysically similar EVs. The MISEV2018 guidelines include tables and outlines of suggested protocols and steps to follow to document specific EV-associated functional activities. Finally, a checklist is provided with summaries of key points

    A glycosyltransferase with a length-controlling activity as a mechanism to regulate the size of polysaccharides

    No full text
    Cyclic β-1,2-glucans (CβG) are osmolyte homopolysaccharides with a cyclic β-1,2-backbone of 17–25 glucose residues present in the periplasmic space of several bacteria. Initiation, elongation, and cyclization, the three distinctive reactions required for building the cyclic structure, are catalyzed by the same protein, the CβG synthase. The initiation activity catalyzes the transference of the first glucose from UDP-glucose to a yet-unidentified amino acid residue in the same protein. Elongation proceeds by the successive addition of glucose residues from UDP-glucose to the nonreducing end of the protein-linked β-1,2-oligosaccharide intermediate. Finally, the protein-linked intermediate is cyclized, and the cyclic glucan is released from the protein. These reactions do not explain, however, the mechanism by which the number of glucose residues in the cyclic structure is controlled. We now report that control of the degree of polymerization (DP) is carried out by a β-1,2-glucan phosphorylase present at the CβG synthase C-terminal domain. This last activity catalyzes the phosphorolysis of the β-1,2-glucosidic bond at the nonreducing end of the linear protein-linked intermediate, releasing glucose 1-phosphate. The DP is thus regulated by this “length-controlling” phosphorylase activity. To our knowledge, this is the first description of a control of the DP of homopolysaccharides

    Continental-scale acoustic telemetry and network analysis reveal new insights into stock structure

    No full text
    Delineation of population structure (i.e. stocks) is crucial to successfully manage exploited species and to address conservation concerns for threatened species. Fish migration and associated movements are key mechanisms through which discrete populations mix and are thus important determinants of population structure. Detailed information on fish migration and movements is becoming more accessible through advances in telemetry and analysis methods however such information is not yet used systematically in stock structure assessment. Here, we described how detections of acoustically tagged fish across a continental-scale array of underwater acoustic receivers were used to assess stock structure and connectivity in seven teleost and seven shark species and compared to findings from genetic and conventional tagging. Network analysis revealed previously unknown population connections in some species, and in others bolstered support for existing stock discrimination by identifying nodes and routes important for connectivity. Species with less variability in their movements required smaller sample sizes (45–50 individuals) to reveal useful stock structure information. Our study shows the power of continental-scale acoustic telemetry networks to detect movements among fishery jurisdictions. We highlight methodological issues that need to be considered in the design of acoustic telemetry studies for investigating stock structure and the interpretation of the resulting data. The advent of broad-scale acoustic telemetry networks across the globe provides new avenues to understand how movement informs population structure and can lead to improved management
    corecore