24 research outputs found

    Synthesis and Evaluation of 4-Cycloheptylphenols as Selective Estrogen Receptor-β Agonists (SERBAs)

    Get PDF
    A short and efficient route to 4-(4-hydroxyphenyl)cycloheptanemethanol was developed, which resulted in the preparation of a mixture of 4 stereoisomers. The stereoisomers were separated by preparative HPLC, and two of the stereoisomers identified by X-ray crystallography. The stereoisomers, as well as a small family of 4-cycloheptylphenol derivatives, were evaluated as estrogen receptor-beta agonists. The lead compound, 4-(4-hydroxyphenyl)cycloheptanemethanol was selective for activating ER relative to seven other nuclear hormone receptors, with 300-fold selectivity for the β over α isoform and with EC50 of 30–50 nM in cell-based and direct binding assays

    Universal Patterns in Color-Emotion Associations Are Further Shaped by Linguistic and Geographic Proximity

    Get PDF
    Many of us "see red," "feel blue," or "turn green with envy." Are such color-emotion associations fundamental to our shared cognitive architecture, or are they cultural creations learned through our languages and traditions? To answer these questions, we tested emotional associations of colors in 4,598 participants from 30 nations speaking 22 native languages. Participants associated 20 emotion concepts with 12 color terms. Pattern-similarity analyses revealed universal color-emotion associations (average similarity coefficientr= .88). However, local differences were also apparent. A machine-learning algorithm revealed that nation predicted color-emotion associations above and beyond those observed universally. Similarity was greater when nations were linguistically or geographically close. This study highlights robust universal color-emotion associations, further modulated by linguistic and geographic factors. These results pose further theoretical and empirical questions about the affective properties of color and may inform practice in applied domains, such as well-being and design.Peer reviewe

    The sun is no fun without rain : Physical environments affect how we feel about yellow across 55 countries

    Get PDF
    Across cultures, people associate colours with emotions. Here, we test the hypothesis that one driver of this cross-modal correspondence is the physical environment we live in. We focus on a prime example – the association of yellow with joy, – which conceivably arises because yellow is reminiscent of life-sustaining sunshine and pleasant weather. If so, this association should be especially strong in countries where sunny weather is a rare occurrence. We analysed yellow-joy associations of 6625 participants from 55 countries to investigate how yellow-joy associations varied geographically, climatologically, and seasonally. We assessed the distance to the equator, sunshine, precipitation, and daytime hours. Consistent with our hypotheses, participants who live further away from the equator and in rainier countries are more likely to associate yellow with joy. We did not find associations with seasonal variations. Our findings support a role for the physical environment in shaping the affective meaning of colour.Peer reviewe

    An original phylogenetic approach identified mitochondrial haplogroup T1a1 as inversely associated with breast cancer risk in BRCA2 mutation carriers

    Get PDF
    Introduction: Individuals carrying pathogenic mutations in the BRCA1 and BRCA2 genes have a high lifetime risk of breast cancer. BRCA1 and BRCA2 are involved in DNA double-strand break repair, DNA alterations that can be caused by exposure to reactive oxygen species, a main source of which are mitochondria. Mitochondrial genome variations affect electron transport chain efficiency and reactive oxygen species production. Individuals with different mitochondrial haplogroups differ in their metabolism and sensitivity to oxidative stress. Variability in mitochondrial genetic background can alter reactive oxygen species production, leading to cancer risk. In the present study, we tested the hypothesis that mitochondrial haplogroups modify breast cancer risk in BRCA1/2 mutation carriers. Methods: We genotyped 22,214 (11,421 affected, 10,793 unaffected) mutation carriers belonging to the Consortium of Investigators of Modifiers of BRCA1/2 for 129 mitochondrial polymorphisms using the iCOGS array. Haplogroup inference and association detection were performed using a phylogenetic approach. ALTree was applied to explore the reference mitochondrial evolutionary tree and detect subclades enriched in affected or unaffected individuals. Results: We discovered that subclade T1a1 was depleted in affected BRCA2 mutation carriers compared with the rest of clade T (hazard ratio (HR) = 0.55; 95% confidence interval (CI), 0.34 to 0.88; P = 0.01). Compared with the most frequent haplogroup in the general population (that is, H and T clades), the T1a1 haplogroup has a HR of 0.62 (95% CI, 0.40 to 0.95; P = 0.03). We also identified three potential susceptibility loci, including G13708A/rs28359178, which has demonstrated an inverse association with familial breast cancer risk. Conclusions: This study illustrates how original approaches such as the phylogeny-based method we used can empower classical molecular epidemiological studies aimed at identifying association or risk modification effects.Peer reviewe

    Autophagy-Independent Lysosomal Targeting Regulated by ULK1/2-FIP200 and ATG9

    No full text
    Iron is vital for many homeostatic processes, and its liberation from ferritin nanocages occurs in the lysosome. Studies indicate that ferritin and its binding partner nuclear receptor coactivator-4 (NCOA4) are targeted to lysosomes by a form of selective autophagy. By using genome-scale functional screening, we identify an alternative lysosomal transport pathway for ferritin that requires FIP200, ATG9A, VPS34, and TAX1BP1 but lacks involvement of the ATG8 lipidation machinery that constitutes classical macroautophagy. TAX1BP1 binds directly to NCOA4 and is required for lysosomal trafficking of ferritin under basal and iron-depleted conditions. Under basal conditions ULK1/2-FIP200 controls ferritin turnover, but its deletion leads to TAX1BP1-dependent activation of TBK1 that regulates redistribution of ATG9A to the Golgi enabling continued trafficking of ferritin. Cells expressing an amyotrophic lateral sclerosis (ALS)-associated TBK1 allele are incapable of degrading ferritin suggesting a molecular mechanism that explains the presence of iron deposits in patient brain biopsies

    Tankyrase inhibitor sensitizes lung cancer cells to endothelial growth factor receptor (EGFR) inhibition via stabilizing angiomotins and inhibiting yap signaling

    No full text
    YAP signaling pathway plays critical roles in tissue homeostasis, and aberrant activation of YAP signaling has been implicated in cancers. To identify tractable targets of YAP pathway, we have performed a pathway-based pooled CRISPR screen and identified tankyrase and its associated E3 ligase RNF146 as positive regulators of YAP signaling. Genetic ablation or pharmacological inhibition of tankyrase prominently suppresses YAP activity and YAP target gene expression. Using a proteomic approach, we have identified angiomotin family proteins, which are known negative regulators of YAP signaling, as novel tankyrase substrates. Inhibition of tankyrase or depletion of RNF146 stabilizes angiomotins. Angiomotins physically interact with tankyrase through a highly conserved motif at their N terminus, and mutation of this motif leads to their stabilization. Tankyrase inhibitor-induced stabilization of angiomotins reduces YAP nuclear translocation and decreases downstream YAP signaling. We have further shown that knock-out of YAP sensitizes non-small cell lung cancer to EGFR inhibitor Erlotinib. Tankyrase inhibitor, but not porcupine inhibitor, which blocks Wnt secretion, enhances growth inhibitory activity of Erlotinib. This activity is mediated by YAP inhibition and not Wnt/β-catenin inhibition. Our data suggest that tankyrase inhibition could serve as a novel strategy to suppress YAP signaling for combinatorial targeted therapy.2016 by The American Society for Biochemistry and Molecular Biology, Inc

    A Genome-wide CRISPR Screen Identifies ZCCHC14 as a Host Factor Required for Hepatitis B Surface Antigen Production

    No full text
    A hallmark of chronic hepatitis B (CHB) virus infection is the presence of high circulating levels of non-infectious small lipid HBV surface antigen (HBsAg) vesicles. Although rare, sustained HBsAg loss is the idealized endpoint of any CHB therapy. A small molecule, RG7834, has been previously reported to inhibit HBsAg expression by targeting terminal nucleotidyltransferase proteins 4A and 4B (TENT4A and TENT4B). In this study, we describe a genome-wide CRISPR screen to identify other potential host factors required for HBsAg expression and to gain further insights into the mechanism of RG7834. We report more than 60 genes involved in regulating HBsAg and identify additional factors involved in RG7834 activity, including a zinc finger CCHC-type containing 14 (ZCCHC14) protein. We show that ZCCHC14, together with TENT4A/B, stabilizes HBsAg expression through HBV RNA tailing, providing a potential new therapeutic target to achieve functional cure in CHB patients. Hyrina et al. employ a non-biased functional CRISPR screening approach to identify host factors regulating HBsAg expression as well as those targeted by RG7834, a HBsAg inhibitor. The screen highlighted over 60 genes and identified a mechanism by which ZCCHC14, together with TENT4A/B, stabilizes HBsAg expression through HBV RNA tailing

    Genome-wide CRISPR screen identifies protein pathways modulating tau protein levels in neurons

    No full text
    Aggregates of hyperphosphorylated tau protein are a pathological hallmark of more than 20 distinct neurodegenerative diseases, including Alzheimer's disease, progressive supranuclear palsy, and frontotemporal dementia. While the exact mechanism of tau aggregation is unknown, the accumulation of aggregates correlates with disease progression. Here we report a genome-wide CRISPR screen to identify modulators of endogenous tau protein for the first time. Primary screens performed in SH-SY5Y cells, identified positive and negative regulators of tau protein levels. Hit validation of the top 43 candidate genes was performed using Ngn2-induced human cortical excitatory neurons. Using this approach, genes and pathways involved in modulation of endogenous tau levels were identified, including chromatin modifying enzymes, neddylation and ubiquitin pathway members, and components of the mTOR pathway. TSC1, a critical component of the mTOR pathway, was further validated in vivo, demonstrating the relevance of this screening strategy. These findings may have implications for treating neurodegenerative diseases in the future
    corecore