1,026 research outputs found
A symplectic acceleration method for the solution of the algebraic riccati equation on a parallel computer
AbstractWe give a cubic acceleration method for improving the current symplectic Jacobi-like algorithm for computing the Hamiltonian-Schur decomposition of a Hamiltonian matrix and finding the positive semidefinite solution of the Riccati equation. The acceleration method can speed up the rate of convergence at the end of the symplectic Jacobi-like process when the norm of the current strictly J-lower triangle has become sufficiently small; it has high parallelism and takes O(n) computational time when implemented on a mesh-connected n × n array processor system. A quantitative analysis of convergence and numerical comparisons of one Jacobi sweep versus one correction step are presented
What can the braking indices tell us about pulsars' nature?
As a result of observational difficulties, braking indices of only six
rotation-powered pulsars are obtained with certainty, all of which are
remarkably smaller than the value () expected for pure magnetodipole
radiation model. This is still a real fundamental question not being well
answered after nearly forty years of the discovery of pulsar. The main problem
is that we are shamefully not sure about the dominant mechanisms that result in
pulsars' spin-down. Based on the previous works, the braking index is
re-examined, with a conclusion of suggesting a constant gap potential drop for
pulsars with magnetospheric activities. New constrains on model parameters from
observed braking indices are presented.Comment: 10 pages, 4 figures, submitted to "Advances in Space Research"
(Proceedings of COSPAR 2006
Spin 3/2 Pentaquarks
We investigate the possible existence of the spin 3/2 pentaquark states using
interpolating currents with K-N color-octet structure in the framework of QCD
finite energy sum rule (FESR). We pay special attention to the convergence of
the operator product expansion
Ionization degree of the electron-hole plasma in semiconductor quantum wells
The degree of ionization of a nondegenerate two-dimensional electron-hole
plasma is calculated using the modified law of mass action, which takes into
account all bound and unbound states in a screened Coulomb potential.
Application of the variable phase method to this potential allows us to treat
scattering and bound states on the same footing. Inclusion of the scattering
states leads to a strong deviation from the standard law of mass action. A
qualitative difference between mid- and wide-gap semiconductors is
demonstrated. For wide-gap semiconductors at room temperature, when the bare
exciton binding energy is of the order of T, the equilibrium consists of an
almost equal mixture of correlated electron-hole pairs and uncorrelated free
carriers.Comment: 22 pages, 6 figure
Recommended from our members
Transpacific Transport of Ozone Pollution and the Effect of Recent Asian Emission Increases on Air Quality in North America: An Integrated Analysis Using Satellite, Aircraft, Ozonesonde, and Surface Observations
We use an ensemble of aircraft, satellite, sonde, and surface observations for April–May 2006 (NASA/INTEX-B aircraft campaign) to better understand the mechanisms for transpacific ozone pollution and its implications for North American air quality. The observations are interpreted with a global 3-D chemical transport model (GEOS-Chem). OMI NO2 satellite observations constrain Asian anthropogenic NOx emissions and indicate a factor of 2 increase from 2000 to 2006 in China. Satellite observations of CO from AIRS and TES indicate two major events of Asian transpacific pollution during INTEX-B. Correlation between TES CO and ozone observations shows evidence for transpacific ozone pollution. The semi-permanent Pacific High and Aleutian Low cause splitting of transpacific pollution plumes over the Northeast Pacific. The northern branch circulates around the Aleutian Low and has little impact on North America. The southern branch circulates around the Pacific High and some of that air impacts western North America. Both aircraft measurements and model results show sustained ozone production driven by peroxyacetylnitrate (PAN) decomposition in the southern branch, roughly doubling the transpacific influence from ozone produced in the Asian boundary layer. Model simulation of ozone observations at Mt. Bachelor Observatory in Oregon (2.7 km altitude) indicates a mean Asian ozone pollution contribution of 9±3 ppbv to the mean observed concentration of 54 ppbv, reflecting mostly an enhancement in background ozone rather than episodic Asian plumes. Asian pollution enhanced surface ozone concentrations by 5–7 ppbv over western North America in spring 2006. The 2000–2006 rise in Asian anthropogenic emissions increased this influence by 1–2 ppbv.Earth and Planetary SciencesEngineering and Applied Science
Partonic flow and -meson production in Au+Au collisions at = 200 GeV
We present first measurements of the -meson elliptic flow
() and high statistics distributions for different
centralities from = 200 GeV Au+Au collisions at RHIC. In
minimum bias collisions the of the meson is consistent with the
trend observed for mesons. The ratio of the yields of the to those of
the as a function of transverse momentum is consistent with a model
based on the recombination of thermal quarks up to GeV/,
but disagrees at higher momenta. The nuclear modification factor () of
follows the trend observed in the mesons rather than in
baryons, supporting baryon-meson scaling. Since -mesons are
made via coalescence of seemingly thermalized quarks in central Au+Au
collisions, the observations imply hot and dense matter with partonic
collectivity has been formed at RHIC.Comment: 6 pages, 4 figures, submit to PR
Measurement of the Bottom contribution to non-photonic electron production in collisions at =200 GeV
The contribution of meson decays to non-photonic electrons, which are
mainly produced by the semi-leptonic decays of heavy flavor mesons, in
collisions at 200 GeV has been measured using azimuthal
correlations between non-photonic electrons and hadrons. The extracted
decay contribution is approximately 50% at a transverse momentum of GeV/. These measurements constrain the nuclear modification factor for
electrons from and meson decays. The result indicates that meson
production in heavy ion collisions is also suppressed at high .Comment: 6 pages, 4 figures, accepted by PR
Measurement of Mass and Width of the W Boson at LEP
We report on measurements of the mass and total decay width of the W boson
with the L3 detector at LEP. W-pair events produced in
interactions between 161 GeV and 183 GeV centre-of-mass energy are selected in
a data sample corresponding to a total luminosity of 76.7 pb. Combining
all final states in W-pair production, the mass and total decay width of the W
boson are determined to be GeV and
GeV, respectively
Formation of dense partonic matter in relativistic nucleus-nucleus collisions at RHIC: Experimental evaluation by the PHENIX collaboration
Extensive experimental data from high-energy nucleus-nucleus collisions were
recorded using the PHENIX detector at the Relativistic Heavy Ion Collider
(RHIC). The comprehensive set of measurements from the first three years of
RHIC operation includes charged particle multiplicities, transverse energy,
yield ratios and spectra of identified hadrons in a wide range of transverse
momenta (p_T), elliptic flow, two-particle correlations, non-statistical
fluctuations, and suppression of particle production at high p_T. The results
are examined with an emphasis on implications for the formation of a new state
of dense matter. We find that the state of matter created at RHIC cannot be
described in terms of ordinary color neutral hadrons.Comment: 510 authors, 127 pages text, 56 figures, 1 tables, LaTeX. Submitted
to Nuclear Physics A as a regular article; v3 has minor changes in response
to referee comments. Plain text data tables for the points plotted in figures
for this and previous PHENIX publications are (or will be) publicly available
at http://www.phenix.bnl.gov/papers.htm
Plasma Wakefield Acceleration with a Modulated Proton Bunch
The plasma wakefield amplitudes which could be achieved via the modulation of
a long proton bunch are investigated. We find that in the limit of long bunches
compared to the plasma wavelength, the strength of the accelerating fields is
directly proportional to the number of particles in the drive bunch and
inversely proportional to the square of the transverse bunch size. The scaling
laws were tested and verified in detailed simulations using parameters of
existing proton accelerators, and large electric fields were achieved, reaching
1 GV/m for LHC bunches. Energy gains for test electrons beyond 6 TeV were found
in this case.Comment: 9 pages, 7 figure
- …
