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ABSTRACT 

We give a cubic acceleration method for improving the current symplectic 
Jacobi-like algorithm for computing the Hamiltonian-Schur decomposition of a Hamil- 

tonian matrix and finding the positive semidefinite solution of the Riccati equation. 
The acceleration method can speed up the rate of convergence at the end of the 

symplectic Jacobi-like process when the norm of the current strictly J-lower triangle 
has become sufficiently small; it has high parallelism and takes O(n) computational 

time when implemented on a mesh-connected n x n array processor system. A 
quantitative analysis of convergence and numerical comparisons of one Jacobi sweep 

versus one correction step are presented. 

1. INTRODUCTION 

The problem of solving the algebraic Riccati equation 

-XNX + XA + A*X + K = 0 (1.1) 
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(here A, K, N, and X are complex n X n matrices, N = N* > 0, and 
K = K* 2 0) arises for instance in linear-quadratic optimal control problems. 
It is assumed that (A, B) is stabilizable and (C, A) is detectable, where B 
and C are full-rank factorizations of N and K, respectively [9]. Under these 
assumptions, the equation (1.1) has a unique positive semidefinite solution 
which is equivalent to the problem of finding an n-dimensional invariant 

subspace 
Y 

[ 1 Z 
corresponding to the stable eigenvalues of the Hamiltonian 

matrix 

M= [“, _;*I. (1.2) 

The solution of Equation (1.1) is then obtained by X = -ZY-‘. A matrix M 

is called Hamiltonian if (JM)* = JM, where J is the 2n X 2n matrix 

0 1 
[ 1 -I 0 

and I is the n X n identity matrix. It is well known that a Hamiltonian matrix 
is invariant under symplectic similarity transformations (a matrix S E C2”’ 2n 
is symplectic if S*jS = J). In 1981, Paige and Van Loan [ll] proved that, if 
the eigenvalues of M have nonzero real parts, then M has a Schur-Hamilto- 
nian decomposition, i.e., there exists a unitary symplectic matrix 

Q= _;: F > [ 1 
Ql> Q2 E CnXn, 

1 

such that 

Q*MQ = [; $1 =R, (1.3) 

where G* = G E CnXn, T E CnX” . 1s upper triangular, and the eigenvalues 
of T are in the left half plane. The matrix R in (1.3) is called a J-upper 
triangular matrix. Since 
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the desired nonnegative Hermitian solution of the Riccati equation (1.1) is 
given by X = Q2QI’ Ill]. 

Bunse-Gerstner and Mehrmann [2] and Ammar and Mehrmann [l] pro- 
posed the SR algorithm and SISHC algorithm, respectively, for solving the 
equation (1.1) on a sequential machine. Both methods preserve the Hamilto- 
nian structure. In the former, some intermediate transformation may fail to 
exist or may become very ill conditioned. But the latter uses only unitary 
symplectic transformations. The QR algorithm using unitary transformations, 
proposed earlier by Laub [9], unfortunately destroys the Hamiltonian struc- 
ture. However, the above three algorithms are not suitable for parallel 
processing. 

In 1989, Byers [4] first proposed the symplectic Jacobi-like algorithm for 
the computation of the Hamiltonian-Schur decomposition of a Hamiltonian 
matrix. This algorithm requires O(n) computational time for a sweep when 
implemented on a mesh-connected n X n array processor system. It uses 
only unitary symplectic transformations and is close to the Jacobi-like method 
for a non-Hermitian matrix [12]. However, the convergence of Byers’s 
method [4] can be very slow if the Hamiltonian matrix is not near to 
normality; and very often the method does not converge at all for problems of 
dimension greater than 20. Recently, Bunse-Gerstner [3] developed a sym- 
plectic Jacobi-like algorithm for the computation of the Hamiltonian-Schur 
decomposition (1.3) based on the technique of Eberlein [7]. Each iterate in 
[3] needs only local information about the current matrix, thus admitting 
efficient parallel implementations on certain parallel architectures. The nu- 
merical experiments show that the convergence seems to be between linear 
and quadratic, which is much faster than the method in [4] when the matrices 
are far from normality. 

The purpose of this paper is to describe an effective acceleration method 
(correction method) which can be used to speed up the rate of convergence 
at the end of the symplectic Jacobi-like algorithm in [3] or [4], when the norm 
of the strictly J-lower triangle of the current Hamiltonian matrix has become 
sufficiently small. The new method can be implemented on a mesh-con- 
nected rr X n array processor system in O(n) time. 

In Section 2, we first briefly introduce the symplectic Jacobi-like (SJL) 
method (see [3, 41 for more details). Then, we propose a reordering tech- 
nique for eigenvalues and its parallel implementation. In Section 3, we derive 
some special matrix equations and then use these equations to develop a 
cubic symplectic acceleration method (SAM). This method is regarded as a 
corrector after some sweeps of the SJL method. A parallel processing for the 
SAM method and a Hermitian updating of an approximate solution of (1.1) 
are also given. In Section 4 we present a quantitative convergence analysis for 
the acceleration method. Theoretically, we prove that the SAM method 
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convergences cubically. In Section 5, we compare the flop counts of the SAM 
method and the SJL method. The comparison shows that the SAM method 
needs fewer flops. Finally, we give some examples first computed by the SJL 
method and then corrected by the SAM method. Those results show that the 
accuracy of the solutions is almost twice more than that by the SJL method 
only. 

We denote by I, (or I) the 12 X n unit matrix, by A* the complex 
conjugate transpose of an n x n matrix, and by B @ C the direct sum of 
matrices B and C. 

2. SYMPLECTIC JACOBI-LIKE ALGORITHM 

Byers [4] developed a symplectic Jacobi-like method for reducing the 
Hamiltonian matrix 

to a J-upper triangular matrix (1.3) by Householder [ H(k, c, s)-rotation] and 
Jacobi [J(n, c, .s)-rotation] symplectic similarity transformations. These trans- 
formations, based on plane rotations, are used to annihilate the elements of K 
and the strictly lower triangular elements of A. We briefly describe these 
basic unitary symplectic rotations (see also [4]). 

2.1. Householder Symplectic Rotation H(k, c, s> 

Let 

A, = ‘k,k ak,k+l 

ak+l,k ak+l,k+l 1 
be a 2 X 2 submatrix of A, and let [c, s]’ be a unit eigenvector of A, 

associated with the eigenvalue h. Then the matrix 
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is unitary and satisfies 

EQUATION 441 

. 

U*A,U = ; ; . 
[ 1 

Let P = Zk_ 1 CB U CB I,, _k _ 1. We then call the unitary symplectic matrix of 
the form 

H(k) := H(k,c,s) = 
P 0 

[ I 0 P 

the Householder symplectic rotation. 

2.2. Jacobi symplectic rotation J(n, c, s> 
We now consider the 2 X 2 submatrix 

of M as in (1.2). Let [c, slT be a unit eigenvector of M, associated with A. It 
is easily seen tht if Re A # 0, then Es E R. Hence the matrix 

is unitary and symplectic, and satisfies 

V*M,V = 

But when Re h = 0, i.e. k,,n,, + (Re a,“)’ < 0, then Es need not be real. 
We want to find a unitary symplectic rotation 

V=Z -: [ 1 (say) 

with Es E R such that the element e:V *M,Ve, is as small as possible. This 
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can be done by solving the following minimization: 

min 
c*+s2= 1 

c’k,” - cs(a,, + ii,,) - s2nnn I. 

This gives 

c=hG and s=ct, 

where 

t = (sip u)(lul * m) 
U 

n nn + L 
U= 

2 
and u= Rea,,. 

We call a unitary symplectic matrix which has the structure 

J(n) :=J(n,c,s) = with r, 2 E cnXn, 

where r = diag(1,. . . 1, c) and C = diag(0,. . . ,O, s>, a Jacobi symplectic 

rotation. 

2.3. Choice of Rotation 

In general, there are two choices of the vector [c, s]r for the matrix A, in 
Section 2.1 (for M, in Section 2.2). We call the one for which [cl in U as in 
Section 2.1 (ICI in V as in Section 2.2) is the smallest the outer H-rotation 

(outer J-rotation), and the other the inner H-rotation (inner G-rotation); 

here H stands for Householder and J for Jacobi. To help insure convergence, 
the outer H- and J-rotations are preferred [12]. 

The symplectic Jacobi-like algorithm consists of a sequence of unitary 
symplectic similarity transformations M := S* MS, where S is one of the two 
basic symplectic transformations described above. Each similarity transforma- 
tion reduces the Frobenius norm o(e) of the strictly J-lower triangle of M, 
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where a(M) is defined by 
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l/2 

I . 
Although the matrix M will converge to a J-upper triangular matrix by the 

symplectic Jacobi-like algorithm [4], it is not guaranteed that the diagonal 
elements of M with negative real parts appear in T [as in (1.3)], which is 
necessary to get the nonnegative Hermitian solution of (1.1). Therefore, a 
reordering process is needed to arrange all diagonal elements of M with 
negative real parts appearing on the diagonal of T. A sequential reordering by 
unitary symplectic similarity transformations of this second pass was de- 
scribed in [2]. However, a parallel implementation of this reordering process 
is not trivial at all. The next subsection and Figure 1 describe this parallel 
implementation. 

2.4. Reordering of the Eigenvalues and Parallel Implementation 

We now consider the case when the SJL method converges. That is, for 
k = 1,2,. , . , the sequence M k + 1 = Qz M, Qk converges to a J-upper trian- 
gular matrix, 

as in (1.3) with M, := M, where Qk is the product of the H- and J-rotations. 
Now, let Re t,, > 0, where t,, is the pth diagonal entry of T. We first 

apply the Householder rotations H( p), . . . , H(n - 1) to move the element 
t pp to the (n, n> position of T, and then apply the Jacobi rotation J(n) to 
interchange t,, with -t [the (n, n) entry of the current -T*]. Here the 
H- and J-rotations are c i? osen so that the corresponding eigenvalues inter- 
changed. The following process formulates the interchange of the entry t,, 
of T with -tpp of -T*: 

R^ :=J(n)*H(n - 1)” 0.. H( p)*RH( p) *.. H(n - l)](n). (2.1) 

We exhibit in Figure 1 a useful strategy for devising a parallel implementa- 
tion of the interchange algorithm on the matrix T (n = 6) (the other matrices 
-T* and G are the same) for the worst case for reordering. That is, we 
consider the case that all diagonal elements of T having positive real parts. 
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I 

xxxxxx 
xxxxxx 
xxxxxx 
xxxxxx 
xxxxxx 
xXxXx1 

5 
xxxx22 
x x x x.2 2 
xxxxxx 
xxx443 
22X443 
22X33A 

9 
xxxx55 
x77x55 
x77xxx 
XXX176 
55x776 
55X666 

13 
AXXX80 
XAAX88 
XAAXXX 
XXXAA9 
88XAA9 
88X998 

17 
AXXXBB 
XAXXBB 
XXAXXX 
XXXDDC 
BBXDDC 
BBXCCA 

21 
AXXXDD 
XAXXDD 
XXAXXX 
XXXAXF 
EEXXAF 
EEXFFA 

2 
xxxxxx 
xxxxxx 
xxxxxx 
XXXXXl 
XXXXXl 
XXXIIA 

6 
xxxxxx 
xxx443 
xxx443 
X448X4 
x44xx4 
X33446 

10 
x77xxx 
7AX776 
7XX716 
X77AX7 
x77xx7 
X6617A 

14 
AAAXXX 
AAXAA9 
AXXAA9 
XAAAXA 
XAAXXA 
X99AAA 

18 
AXXXXX 
XAXDDC 
XXADDC 
XDDAXD 
XDDXXD 
XCCDDA 

22 
AXXXXX 
XAXXXF 
XXAXXF 
XXXAXX 
XXXXAX 
XFFXXA 

3 
xxxxxx 
xXxXx1 
xXxXx1 
xxxxxx 
xxxx22 
x11x22 

7 
xxx443 
xxxxxx 
xx55xx 
4X55XX 
4xxx55 
3xxx55 

11 
88X776 
88XxX7 
Xx88X7 
7X88xX 
7XXX88 
677X88 

15 
AXXAA9 
XAXXXA 
XXBBXA 
AXBBXX 
AXXXBB 
9AAXBB 

19 
AXXDDC 
XAXXXX 
XXAXXX 
DXXAXX 
DXXXEE 
CXXXEE 

23 
AXXXXF 
XAXXXX 
XXAXXX 
XXXAXX 
XXXXAX 
FXXXXA 

4 
xXxXx1 
xxxxxx 
xxxx22 
xxxx22 
Xx226X 
1X22X3 

8 
xx55xx 
xx55xx 
55AX55 
55xx55 
XX55AX 
Xx55X6 

12 
AX88XX 
XX88XX 
88AX88 
88xX88 
xX886x 
Xx88X9 

16 
AXBBXX 
XABBXX 
BBAXBB 
BBXXBB 
XXBBAX 
XXBBXC 

20 
AXXXXX 
XAXXXX 
XXAXEE 
XXXAEE 
XXEEAX 
XXEEXF 

24 
AXXXXX 
XAXXXX 
XXAXXX 
XXXAXX 
XXXXAX 
XXXXXA 

FIG. 1. The worst case for reordering. 
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We use the same notation as i [4] and express the numbers in hexadecimal. 
We label the H-rotations generated in time step k with the upright numeral 
for k, and the J-rotation generated in time step k with the italic numeral. The 
triangle A denotes an eigenvalue with negative real part just interchanged in 
the northwestern block T. Each X represents an entry in T along with the 
superimposed associated entry of T or G. 

In step 1, a J-rotation represented by italic 1 is generated from t,,, -inn, 

and g7l* and applied as the similarity transformation 

In step 2, the first desired eigenvalue -t,,, denoted by A, is exchanged into 
the (n, n> position of T, and the J-rotation information is passed horizontally 
and vertically along the last row and column of T, respectively. 

In step 3, an H-rotation represented by 2 is generated from t,_ r, n _ 1, 

-t,,> and the (n - 1, n> entry of the current T and applied as the similarity 
transformation 

The J-rotation information generated in step 1 is continuously passed hori- 
zontally and vertically along the last row and column of T, respectively. 

In step 4, the first desired eigenvalue -t,, is exchanged into the 
(n - 1, n - 1) position of T, and a J-rotation represented by italic 3 is 
generated to move the second desired eigenvalue -i,_ 1, n_ i to the (n, n> 
position of T. The H-rotation information (2-by-2 block) denoted by 2 
generated in step 3 is passed horizontally and vertically outward, respectively. 

In step 5, the second desired eigenvalue - t,, _ i, n _ i is exchanged into the 
(n, n> position of T, and an H-rotation represented by 4 is generated to move 
the eigenvalue - tnn to the (n - 2, n - 2) position of T. The J-rotation 
information denoted by 3 is passed horizontally and vertically along the last 
row and column of T, respectively. 

In step 6, the eigenvalues - 5,” and - 2, _ i, n _ i are exchanged into the 
(n - 2, n - 2) and (n, n) positions of T, respectively. The H-rotation infor- 
mation denoted by 4 generated in step 5 is passed horizontally and vertically 
outward, respectively. 

In step 7, two H-rotations represented by 5 are generated to move the 
eigenvalues - t, n and - t, _ i. n _ i to the (n - 3, n - 3) and (n - 1, n - 1) 
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positions of T, respectively. The H-rotation denoted by 4 and the J-rotation 
denoted by 3 are continuously passed outward. 

In step 8, -t,, and -tn_l,n_l are exchanged into the (n - 3, n - 3) 
and (n - 1, n - 1) positions, respectively, and a J-rotation represented by 
italic 6 is generated to move the eigenvalue -t,_ 2 n_ 2 to the (n, n) position 
of T. The H-rotations denoted by 5 are passed horizontally and vertically 
outward, respectively. 

Steps 9 to 12, 13 to 16, 17 to 20, and 21 to 24 are essentially similar to the 
procedure of steps 5 to 8, respectively. The H-rotations represented by 7, 8, 
A, B, D and E move the eigenvalues with negative real parts upward along 
the diagonal of T by exchanging the desired eigenvalues with the adjacent 
diagonal elements stepwise. The J-rotations represented by italic 9, C, and F 
are generated to move the desired eigenvalues with negative real parts to the 
(n, n> position of T, respectively. 

It can be shown that the above parallel interchange algorithm requires at 
most 4n computational time for the general case. In practice, for large k, the 
matrix 

M, = 

approaches a J-upper triangular matrix. Hence, the diagonal elements of A, 
and -A: are close to the eigenvalues of M and pairwise well separated. 
Therefore, the interchange process can be applied if some diagonal elements 
of A, have positive real parts. 

3. THE 
THE 
THE 

SYMPLECTIC ACCELERATION METHOD AND 
NONNEGATIVE HERMITIAN SOLUTION FOR 
RICCATI EQUATION 

In this section we develop an acceleration technique, the so-called 
symplectic acceleration method (SAM), for reducing the arithmetic cost for 
the case when the eigenvalues of the Hamiltonian M as in (1.2) are distinct. 
This method can speed up the rate of convergence at the end of the SJL 
method in Section 2 when the norm of the strictly J-lower triangle of M has 
become sufficiently small. In other words, M can be regarded as a perturba- 
tion of a J-upper triangular matrix. The main justification for this method is 
that the operations are very well suited to the mesh-connected system and 
the total computational cost is only O(n). Although our method, in its present 
form, is applicable only when the eigenvalues of M are distinct, this is in fact 
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the case for the matrices arising from a number of engineering problems of 
significant practical importance. 

3.1. The Derivation of the Equations 

Let 

s= 

be a 2n X 2n unitary symplectic matrix. We suppose that 

P=z+x,+x, (3.la) 

and 

Q = Y, + Y, (3.lb) 

with 11X,(] = l(Y,ll = O(E) and l]Xsll = /lYsll = 0(.s2>. (Here E is small in 
magnitude, and 1). 11 is an arbitrary matrix norm.) We will indicate how to 
choose Xi and Yi (i = 1,2) so that S is fairly close to a unitary symplectic 
matrix (see also [6]). 

Since S is symplectic and unitary, it follows that 

P*P + Q*Q = Z (3.2a) 

and 

P*Q - Q*P = 0. (3.2b) 

If we ignore the terms in (3.2a) and (3.2b) of order higher than two, we then 
have 

XT + x, = 0, 

x,* + x2 + x,*x, + YCY, = 0, 

(3.3a) 

(3.3b) 

and 

r: - Y1 = 0, 

Y,* + Ypxl - Y2 - XTY, = 0. 

(3.4a) 

(3.4b) 
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It follows that 

x1= -x,x =v, is skew-Hermitian [from (3.3a)], (3.5a) 

Y,=Y;k = w, is Hermitian [from (3.4a)] , (3.5b) 

V: W: 
X, - T + --2- E V, is skew-Hermitian [from (3.3b)], (3.5~) 

y2 - 
WlV, + VlWl 

2 
= W, is Hermitian [from (3.4b)] . (3.5d) 

Hence our original version of the proposed approximations becomes 

v,z wf 
V, + y - --2- = I + O(E) + 0( c’) (3.6a) 

and 

Suppose that 

WlVl + VlWl 
2 

= 0( .s) + 0( E”). (3.6b) 

is close to a 2n X 2n J-upper triangular matrix. That is, the elements of the 
strictly lower triangle of A and the elements of K are sufficiently small [with 
magnitude O(E), say]. By assumptions at the beginning of this section the 
diagonal elements of A, which are close to the eigenvalues of M, are also 
distinct. We now choose 

s= 

with P and Q as in (3.6) so that the norm (T(S*MS) is as small as possible. 
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Let 

(3.7) 

Expanding the left-hand side of (3.71, we get 

i = P*AP - Q*KP - P*NQ - Q*A*Q (3.8a) 

and 

K’= Q”AP + P*KP - Q*NQ + P*A*Q. (3.8b) 

Write A = A,, + A,, where A, is upper triangular and A, is strictly 
lower triangular. Substitute P and Q as in (3.6a, b) into (3.8a, b), respectively, 
and collect the matrices with the same order. We then have 

hA,+[A,-V,A,+A,V,-NW,] 

v,z wf 
----Vv, 

2 2 

-VI A,V, - V, A, + A,V, - W, K + V,NW, 

w,v, + v,w, 
2 

- W,A;W, + 0(c3) 
I 

(3.9a) 

Similarly, we also have 

K’= [W,A, + K + A;W,] 

W, A,V, + W, A, + 
W,V, + V,W, 

2 
A,, + KV, - V, K 

w,v, + v,w, 
2 

-V,A*,W, + ATW, + 0(c3) 1 
= Fl + F, + O(c3). (3.9b) 
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If we set the strictly lower triangles of Ei and the matrices F, (i = 1,2) to 
zero, then S*MS is close to J-upper triangular. Hence from (3.9a, b) we solve 
the matrix equations 

W,A, + A;W, = -K, (3.10a) 

A,V,-V,A,=NW,-A,+T, 

E B, (3.10b) 

W, A, + A*,W, = 
V,K - KV, W,A, + ATW, 

+ 
W,T, + T: W, 

2 - 2 2 

EC (by computation), (3.1Oc) 

A,V, - V, A,, = 
Vl Al - AlVl AaW; - W,2A, 

+ 
2 2 

+ ( *1 - Vl N)Wl + TlVl - VlTl 
2 2 

+NW2+T, 

= D, (3.10d) 

for Hermitian matrices W, and W,, as well as for skew-Hermitian Vi and V, , 

where T, and T, are two suitable upper triangular matrices so that the strictly 
lower triangles of A,V, - V, A,, and A,V, - V, A, are equal to those of B 

and D, respectively. 

3.2. Parallel Implementation 

We first consider the equation (3.1Oa) componentwise. Since W, and K 
are Hermitian and A, is upper triangular with distinct diagonal elements 
having negative real parts, the matrix W, can be computed recursively as 
follows: For j >, i, 

wij = 
-k, - CiL:akjwik - c’-‘~ w k=l ik kj 

Zii + ajj 
(3.11) 

The values aij and wi. (j > i) which have been computed propagate 
themselves simultaneous y rightward and downward at each time step as a 1 
wavefront propagation shown in Figure 2. Hence the elements wij on the 
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6 

FIG. 2. Data flow of the matrix A,,. 

same antidiagonal can be computed independently, and it needs O(n) 
computational time to solve for W,. 

Next, we solve the equation (3.10b) for the skew-Hermitian V,. That is, 
we find a skew-Hermitian matrix V, so that the strictly lower triangle of 
A,V, - V, A, is equal to that of B. It is easily seen that the matrix V, can be 
recursively solved by the following formula: For i > j, 

(3.12) 

If we suitably arrange the data flow of the upper triangular matrix A, as 
shown in Figure 3, then the values uij propagate themselves simultaneously 
rightward and upward at each time step, and so do the values uij just 
computed. Therefore, the strictly lower triangular elements uij of V, on the 
same subdiagonal can be found independently, and it needs O(n) computa- 
tional time to solve for Vi. 

Similarly, we can also solve for W, of (3.10~) in the same way. Here, we 
need to compute two matrix multiplications V, K and W,A, by using a 
data-flow algorithm [lo] in O(n) computational time, where V, and W, have 
been computed by (3.IOb) and (3.1Oa) respectively. Finally, V, in the 
equation (3.1Od) can also be found in the same way as above. 

3.3. Hermitian Updating of the Nonnegative Solution for the Riccuti 
Equation in the SAM Method 

Suppose that 

U= 
SI ST. 

[ I -s, s1 
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1 2 3 4 :t 

aI1 aI2 al3 ala 

FIG. 3. Wavefront propagation. 

is the 2n X 2n unitary symplectic matrix accumulated by applying the SJL 
method and the reordering algorithm to the Hamiltonian matrix M as in 
Section 2. For the Hermitian updating of the nonnegative solution of the 
Riccati equation we are to compute the matrices 

L := s,l, Y := S,lS,, and X := S,S;’ (3.13) 

on the mesh-connected n X n processor system in O(n) time. We first 
compute the QR factorization of S, := Q,R, and ST = Q,g, in O(n) time 
by using the mesh factorization_algorithm in [B, Chapter 61. Simultaneously, 
we compute T, = QT S, and T, ; S,Q, in parallel by applying the Given 
rotations which produce Qi and Qr, respectively, with the same data flow in 
the mesh factorization algorithm. Then we compute the inverse of the upper 
triangular R, and the lower triangular @ using the same wavefront as in 
(3.11). Finally, we compute L = R[‘QT, Y = R,‘T, and X = fig,*, by 
the data-flow algorithm [lo] in O(n) time. Furthermore, from the symplectic 
SVD of the unitary symplectic matrix U one can see that X and Y in (3.13) 
are Hermitian. In practice, we can symmetrize X and Y by the following 
simple Hermitian updating formulas: 

x + x* Y + Y* 
x := ~ and Y := ~ 

2 2 * 
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Now, let 

SC PQ 
[ 1 -0 P 

be the 2n X 2n unitary symplectic matrix computed by the symplectic 
acceleration method, where P and Q are defined in (3.6). Since the set of the 
first n columns of the product of the matrices U and S, 

is close to a basis of the invariant subspace corresponding to the stable 
spectrum of M, the matrix 

i = (S,P + S,Q)(S,P - S,Q)-’ 

= (S,P + S,Q)P-‘(S, - S,QP-')-I 

= (sz + S,QP-'&'(I - S2QP-1S;1)-1 

= (S,S,’ + S,QP-%,‘)(I - S,QP-lS;‘)-l (3.15) 

is then an approximation to the stable solution for the Riccati equation (1.1). 
We ignore the terms of order higher than two of the matrices P-’ and 
QP-l, and get 

WlVl + VlWl 
2 (1 - Vl) 

= w, + w, + VlWl - WlVl 
2 . 

(3.16) 

Next, substituting (3.16) into (3.15) and ignoring the terms of order higher 
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than two of 2 again, we get 

x’ = [S,S;' + S,(QP-')S;'] 

x [ Z + S,(QP-‘)S,’ + S,W,(S,S,)W,S;l] 

= S,S;’ + S,(QP-‘)S,’ + S,S,lS,(QP-l)S,’ 

+s,s,‘s,w,( s,‘s,)w,s,’ + s,w,( s,‘s,)w,s,’ 

= S&r + S;*(QP-‘)S;’ + S;*W,(S;‘S,)W,S;’ 

because of the fact that 

s, = s,* - s;*s2*s2 = s,* - S$,‘S, (3.17) 

(since S, SC1 is Hermitian). From (3.13) we obtain the Hermitian updating 
formula of the approximate solution for the Riccati equation (1.1): 

f=x-L* wl+wz+ ( VlWl - WlVl 
2 1 

L + L*w,YW,L. (3.18) 

REMARK 3.1. If we are only interested in the nonnegative definite 
solution for (l.l), a Hamiltoniar$chur decomposition of M as in (1.3) is not 
necessary. That is, the matrix A in (3.9a) can be arbitrary. For convenience 
of computations we choose Vi 3 V, = 0 in (3.9b); then (3.9b) becomes 

Ei = [W,A, + K + A;W,] 

+ [Wi A, + Ws A0 - W,h’W, + A*,W, + AT W,] 

+ WsA, + A;W, - (WsNW, + W,Nw,) 

-P, + W,)(A, + 4)~ 
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-W;(A; + AT) 
w, + w2 

2 -W,hrW, 

W$ + Kw,2 w$w: 
- + 

2 4 1 
= FI + Fz + Fs. (3.19b) 

Ignoring the terms of order higher than two of K’ in (3.19b), we have the 
matrix equations 

W,A, + A;W, = -K (3.20a) 

and 

W,A, + A;W, = -(W,A, + ATW,) + W,hW, (3.20~) 

for the Hermitian matrices W, and W, , respectively. The Hermitian updating 
formula (3.18) can be reduced as follow: 

x’= x - L*(w, + W,)L + L*w,yw,L. (3.21) 

4. QUANTITATIVE ANALYSIS OF THE LOCAL CONVERGENCE 

To use the symplectic acceleration method for finding the stable solution 
of Riccati equation, we have to solve the equations (3.2Oa) and (3.20~). 
Suppose the norms of A, and K as in (3.9) are O(E). (Here E is small in 
magnitude.) From (3.2Oa) and (3.20~) it is clearly seen that the norms of W, 
and W, are of order E and E ‘, respectively. Therefore, the norm of i in 
(3.19b) is of order c3, which is close to zero. Thus, the SAM method 
improves the result. 

Now, we shall estimate the upper bounds for W, and W,. We define the 
separation of A,, and - AZ [13] by 

Sep,( A,,, -A*,) = Inf{lD’WII~: IIWIIF = 1) 

= Inf{llWA, + AEWllr : IIWIIF = I}, (4.1) 
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where ]I * denotes the norm. Let 

+ Zjj]:i,j l,..., n, 

a,, and ujj are diagonal elements of A,,}. (4.2) 

From (3.11) it is easily seen that the operator T is nonsingular if and only if 
d > 0. However, in our case the matrix A, is upper triangular with Re a,, < 0. 
Hence, we always have d > 0. Furthermore, it also holds that 

Sep,( A,, -A: ) < d [13]. We now define the quantities 

E := max{llKIIF, llA1ll~} < 1, 

p := max{llAoll~, IINIIF} z 1; 

6 := Sep,( A,,, -A*,) > 0. 

Filling in (4.1) with (3.2Oa) and (3.20~1, respectively, we get 

and 

2E2 E2p 
IW,llF G - + - CT2 a3 * 

(4.3) 

(4.4 

From (3.19b), (4.31, and (4.4) follows immediately the error of Fs in (3.19b): 

E3 (p+&)E3 +LZ 
+-+ 

s2 S3 4 s4’ 
(4.5) 

Suppose that 

E3 ps3 p2E3 p2c4 
-,-,- - 
62 63 84 ’ ~5 ’ (4.6) 
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Then from (4.5) we conclude that 

\]F,]]F Q 28.25~. (4.7) 

REMARK 4.1. 

(1) From (4.7) we have that if 77 << E, then the matrix i in (3.19b) is 
sufficiently close to the zero matrix. For a given small magnitude 7, one can 
easily estimate the convergence region [ - 6, E] of our acceleration method 
by (4.6). The smaller the quantities p and 6-l are, the larger the conver- 
gence region is. 

(2) Actually, the quantity S := Sep,( A,, -AZ) is difficult to compute. 
Since d in (4.2) is an upper bound of 6, in practice d can fairly well estimate 
the quantity 8. 

(3) From (4.5) we see that the symplectic acceleration method converges 
cubically. In practice, the symplectic Jacobi-like algorithm developed by 
Bunse-Gerstner [3] can be used as a predictor to diminish the norms of the 
matrix K and the strictly lower triangular matrix A,. If the speed of 
convergence is linear or slower, then the SAM method can be called as a 
corrector to accelerate the rate of convergence. 

5. COMPARISON OF FLOP COUNTS AND NUMERICAL 
EXAMPLES 

We first compare the flop counts of the SAM method with those of one 
full sweep in the SJL method on a single computer: 

(1) Flop counts of the SAM method: 
(i) Solving the equation (3.1Oa): 

. By (3.11), computing wij requires i + j - 1 flops. 
for W,, in”. 

Total count = 
(ii) Solving equation (3.IOb): 

Computing NW, 
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Total flop count = 3in3. 
(iv) Solving the equation (3.IOd): 

. Computing the matrices W;“, NV,, = lin3. 
. Computing the lower triangular parts of the matrices 

ViAi, A,V,, A,W,2, W:A,, NV,W,, T,V,, V,T,> 

NW?., = 2+n3. 
. Solving for V,, = in”. 

Total flop count = 4tn3. 
(v) Additional computation for Hermitian updating: 

. Computing L*W,YW,L, = 2+n3. 

. Computing L*(W, + W, + (V,W, - W,V,)/B)L, = 2+n3. 

Total flop count = 5n3. 

The total number of flops of the SAM method on a single computer is about 
14$n3. 

(2) Flop counts of the SJL-method: 
. Here we ignore the flops of the J-rotation, because the H- 

rotation is the dominant computation. 
. Each H-rotation requires 16n. A full sweep requires 

n(n - 1) J-rotations. Therefore a full sweep on a single 

computer requires about 16n3. 

Next, we compare the flop counts of these two methods on a parallel 
computer with n x n processors. In this paper, “mesh-connected’ means 
each processor Pij (i, j E {1,2, . . . , n}) is connected to its four neighbors 

Pj,j_l, pi,j+l> pi-l,j, ‘i+l,j* 

Here i f 1 and j + 1 are taken modulo n. In the following estimation, the 
major computation of the SAM method is matrix multiplication, which can be 
executed in n flops on an n X n mesh-connected parallel computer: 

(1) Flop counts of the SAM method: 
(i) Solving the equation (3.1Oa), = 2n. 

(ii) Solving the equation (3.IOb): 
. Computing NW, requires n flops. 
. Solving Vi, = 2n. 

Total flop count = 3n. 

(iii) Solving the equation (3.10~): 
. Computing T,, = 2n. 
. Computing Vi K, W, A,, WiTi, = 3n. 
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. Solving W, , = 2 72. 

Total flop count = 7n. 
(iv) Solving the equation (3.1Od): 

. Computing matrices Wf, NV,, = 2n. 

. Computing the matrices V,A,, A,V,, AOWis, WtA,,, NV,W,, 
T,V,, VrT,, NW,, = 8n. 

. Solving V,, = 2n. 

Total flop count = 12n. 
(v) Additional computation for Hermitian updating: 

. Computing L*W,YW,L, = 3n. 

. Computing L*(W, + W, + (V,W, - W,V,)/2)L, = 3n. 

Total flop count = 6n. 

The total number of flops of the SAM method on a parallel computer is 
about 30n. 

(2) Flop counts of the SJL method: 
. Each 2 X 2 rotation requires 8 flops on a 2 X 2 subarray 

processor. Therefore, each rotation can propagate to the neigh- 
bor processors for every 16 flops. 

. A full sweep requires 16 X 2n = 32n. 

We summarize the above flop counts in Table 1. From them we see that 
the SAM method is cheaper than one full sweep of the SJL-method. In the 
previous section, we showed that the asymptotic convergence of the SAM 
method is cubic. Therefore, the SAM method should be an efficient method 
to accelerate the convergence of the SJL method. 

Since there exist examples which cannot converge while using the asym- 
plectic Jacobi-like method, a global convergence theorem is not possible to 
establish. We will now construct some special examples, essentially due to 
[12], which illustrate the asymptotic properties of the algorithm. 

In our numerical tests, we first iterate the matrix M in (1.2) by the 

symplectic Jacobi-like method until the strictly J-lower triangular elements of 

M are sufficiently small. Then we either speed up the rate of convergence by 

the symplectic acceleration method or continue the Jacobi process. All 

TABLE 1 
FLOP COUNTS OF SJL METHOD AND SAM METHOD 

Computer 

Flop count 

SAM SJL 
Single 

Parallel 
14: n3 16 n3 
30 n 32 n 
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numerical results are computed on an IBM PC in FORTRAN 77 with double 
precision. We use the following notation for Examples 4.1 and 4.2: 

s := the number of Jacobi sweeps; 
u := the F-norm of the strictly J-lower triangle of the current M; 
y := the F-norm of the error matrix by applying the solution X to 

the Riccati equation; 
i(IC) := after i Jacobi sweeps we perform the reordering (interchang- 

ing) algorithm of eigenvalues of M; 
iSAM := after the step i - l(IC) we perform the symplectic accelera- 

tion method. 

EXAMPLE 5.1 (n = 5). Let 

&f CYN 
a -D* _ Cyu* ” I 

where D = diag( - 1, -2, - 3, -4, -5); N and U are, respectively, Hermi- 
tian and strictly upper triangular with entries randomly generated between 
+ 1; and S is unitary symplectic. For different (Y ( LY = 0.01, 0.1, 1, lo), we 
have the numerical results given in Table 2. 

EXAMPLE 5.2. Let 

A= 

4, 4, 0 

A 22 A23 

433 43, ’ 

0 A, -1 

-1 

where 

r 
Ai,i+l = _y i ) 

[ 1 
and N = diag(1, 0, 1, . . . , 0, 11, K = diag(0, 10, 0, . . . , 10,O). The numerical 
result is given in Table 3. 

From these two examples, we see that the symplectic acceleration method 
at least doubles the accuracy of the eigenvalues and significantly improves the 
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a S u Y 

0.01 0 5.33 + 00 
1 
2 
3 

3(IC) 

4 
5 

5(K) 

4SAM 

0.1 0 
1 
2 
3 
4 

4(IC) 

5 
6 
7 

7(IC) 

5SAM 

1 0 
1 
2 
3 
4 

4(X) 

5 
6 
7 

7(IC) 

5SAM 

10 0 
1 
5 
7 
8 

&C) 

2.0E + 00 
1.8~ - 01 
3.7E - 04 
3.2~ - 04 

8.2~ - 08 
5.7E - 15 
5.4E - 15 

1.2E - 10 

5.6~ + 00 
2.0E + 00 
2.0E - 01 
1.6~ - 03 
1.2E - 05 
1.2E - 05 

l.OE - 08 
6.4~ - 12 
5.8~ - 17 
5.6~ - 17 

2.3~ - 12 

5.7E + 00 
3.2~ + 00 
5.7E - 01 
3.9E - 02 
2.4~ - 04 
1.7E - 04 

4.2~ - 06 
3.03 - 08 
2.9E - 11 
2.5~ - 11 

4.0E - 10 

2.1E + 01 
7.1E + 00 
4.2~ - 01 
5.03 - 02 
5.6~ - 03 
2.2E - 05 
1.7E - 05 

3.8~ + 00 
1.5E + 01 
2.3~ - 01 
2.7~ - 03 
3.4E - 05 

4.5E - 07 
1.1E - 14 
%3E - 15 

1.9E - 10 

3.2~ + 00 
1.8~ - 01 
2.3~ - 01 
2.0E - 02 
1.4E - 06 
5.4E - 05 

1.8~ - 08 
8.3~ - 12 
4.4E - 17 
6.2~ - 17 

2.0E - 11 

4.2~ + 00 
5.3E + 01 
6.1~ - 01 
2.4~ - 01 
1.2E - 03 
8.8E - 04 

1.2E - 06 
2.3~ - 08 
1.2E - 11 
5.8~ - 11 

1.73 - 09 

1.4E + 01 
1.3E + 01 
1.8~ + 00 
7.2~ - 02 
1.6~ - 03 
%3E - 06 
1.6~ - 05 
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TABLE 2 
(CONTINUED) 

W. W. LIN AND S. S. YOU 

CY s (T Y 

10 2.3~ - 07 4.4~ - 08 
11 6% - 10 7.5E - 10 
12 1.2E - 12 4.4L? - 12 
13 3.2~ - 16 8.2~ - 16 
13(K) 2.8~ - 16 1.7E - 16 

lOSAM 2.7~ - 14 1.4E - ll 

TABLE 3 
IACOBI ALGORITHM + SYMPLECTIC ACCELERATION METHOD 

S o- 

0 2.030~ + 01 
1 1.322~ + 01 
2 2.913E + 00 
3 4.124~ + 00 
4 1.865~ + 00 
5 8.501~ - 01 
6 4.770E - 01 
7 1.184~ - 01 
8 1.226~ - 02 
9 1.816~ - 04 
9CIC) 9.252E - 05 

Y 

2.018~ + 01 
1.128~ + 02 
3.937E + 02 
3.652~ + 01 
3.259E + 01 
1.123~ + 01 
2.024~ + 00 
2.007~ + 00 
2.545~ - 02 
2.606~ - 04 
2.188~ - 04 

10 2.344~ - 07 1.677~ - 08 

::(I0 5.3573 3.718~ - - 12 12 5.448~ 5.372~ - - 12 12 

lOSAM 6.325~ - 11 1.3033 - 10 

convergence speed of the Jacobi algorithm. The algorithm of Bunse-Gerstner 

[2] has a better convergence rate (between linear and quadratic) than the 

others. The combination of that algorithm and our acceleration method 

would be the most powerful strategy. 

REFERENCES 

1 G. S. Ammar and V. Mehrmann, On Hamiltonian and symplectic Hessenberg 
forms, Linear Algebra A&. 149:55-72 (1991). 



2 A. Bunse-Gerstner and V. Mehrmann, A symplectic QR like algorithm for the 

solution of the real algebraic Riccati equation, IEEE Trans. Automat. Control 

AC-31(12):1104-1113 (1986). 
3 A. Bunse-Gerstner, On the Hamiltonian-Schur decomposition of a Hamiltonian 

matrix, to appear. 
4 R. Byers, A Hamiltonian-Jacobi algorithm, presented at SIAM Conference on 

Control in the ’90s May 1989. 
5 J. L. Casti, Dynamical Systems and their Applications: Linear Theory, Academic, 

New York, 1977. 
6 Roy 0. Davies and J. J. Modi, A direct method for computing eigenproblem 

solutions on a parallel computer, Linear Algebra Appl. 77:61-74 (1986). 
7 P. J. Eberlein, On th e c ur S h d ecomposition of a matrix for parallel computation, 

IEEE Trans. Corn@. 36:167-174 (1987). 

8 G. H. Golub and C. F. Van Loan, Matrix Computations, 2nd ed., Johns Hopkins 
U.P., Baltimore, 1989. 

9 A. J. Laub, A Schur method for solving algebraic Riccati equations, 1EEE Trans. 
Automat. Control AC-24(13):913-925 (1979). 

10 D. P. O’Leary and G. W. Stewart, Data-Flow Algorithms for Parallel Matrix 

Computations, Computer Science Tech. Rep. 1366, Univ. of Maryland, 1984. 
11 C. Paige and C. F. Van Loan, A Schur decomposition for Hamiltonian matrices, 

Linear Algebra Appl. 41:11-32 (1981). 
12 G. W. Stewart, A Jacobi-like algorithm for computing the Schur decomposition of 

a non-Hermitian matrix, SIAM J. Statist. Cornput. 6(4):853-864 (1985). 
13 G. W. Stewart, On the sensitivity of the eigenvalue problem Ax = ABx, S1AMJ. 

Numer. Anal. 9(4):669-686 (1972). 

ALGEBRAIC RICCATI EQUATION 463 

Received 11 October 1990; final manuscript accepted 25 September 1992 


