46 research outputs found

    Measuring routine childhood vaccination coverage in 204 countries and territories, 1980-2019 : a systematic analysis for the Global Burden of Disease Study 2020, Release 1

    Get PDF
    Background Measuring routine childhood vaccination is crucial to inform global vaccine policies and programme implementation, and to track progress towards targets set by the Global Vaccine Action Plan (GVAP) and Immunization Agenda 2030. Robust estimates of routine vaccine coverage are needed to identify past successes and persistent vulnerabilities. Drawing from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2020, Release 1, we did a systematic analysis of global, regional, and national vaccine coverage trends using a statistical framework, by vaccine and over time. Methods For this analysis we collated 55 326 country-specific, cohort-specific, year-specific, vaccine-specific, and dosespecific observations of routine childhood vaccination coverage between 1980 and 2019. Using spatiotemporal Gaussian process regression, we produced location-specific and year-specific estimates of 11 routine childhood vaccine coverage indicators for 204 countries and territories from 1980 to 2019, adjusting for biases in countryreported data and reflecting reported stockouts and supply disruptions. We analysed global and regional trends in coverage and numbers of zero-dose children (defined as those who never received a diphtheria-tetanus-pertussis [DTP] vaccine dose), progress towards GVAP targets, and the relationship between vaccine coverage and sociodemographic development. Findings By 2019, global coverage of third-dose DTP (DTP3; 81.6% [95% uncertainty interval 80.4-82 .7]) more than doubled from levels estimated in 1980 (39.9% [37.5-42.1]), as did global coverage of the first-dose measles-containing vaccine (MCV1; from 38.5% [35.4-41.3] in 1980 to 83.6% [82.3-84.8] in 2019). Third- dose polio vaccine (Pol3) coverage also increased, from 42.6% (41.4-44.1) in 1980 to 79.8% (78.4-81.1) in 2019, and global coverage of newer vaccines increased rapidly between 2000 and 2019. The global number of zero-dose children fell by nearly 75% between 1980 and 2019, from 56.8 million (52.6-60. 9) to 14.5 million (13.4-15.9). However, over the past decade, global vaccine coverage broadly plateaued; 94 countries and territories recorded decreasing DTP3 coverage since 2010. Only 11 countries and territories were estimated to have reached the national GVAP target of at least 90% coverage for all assessed vaccines in 2019. Interpretation After achieving large gains in childhood vaccine coverage worldwide, in much of the world this progress was stalled or reversed from 2010 to 2019. These findings underscore the importance of revisiting routine immunisation strategies and programmatic approaches, recentring service delivery around equity and underserved populations. Strengthening vaccine data and monitoring systems is crucial to these pursuits, now and through to 2030, to ensure that all children have access to, and can benefit from, lifesaving vaccines. Copyright (C) 2021 The Author(s). Published by Elsevier Ltd.Peer reviewe

    An embedding technique to determine ττ backgrounds in proton-proton collision data

    Get PDF
    An embedding technique is presented to estimate standard model tau tau backgrounds from data with minimal simulation input. In the data, the muons are removed from reconstructed mu mu events and replaced with simulated tau leptons with the same kinematic properties. In this way, a set of hybrid events is obtained that does not rely on simulation except for the decay of the tau leptons. The challenges in describing the underlying event or the production of associated jets in the simulation are avoided. The technique described in this paper was developed for CMS. Its validation and the inherent uncertainties are also discussed. The demonstration of the performance of the technique is based on a sample of proton-proton collisions collected by CMS in 2017 at root s = 13 TeV corresponding to an integrated luminosity of 41.5 fb(-1).Peer reviewe

    Performance of missing transverse momentum reconstruction in proton-proton collisions at root s=13 TeV using the CMS detector

    Get PDF
    The performance of missing transverse momentum ((p) over right arrow (miss)(T)) reconstruction algorithms for the CMS experiment is presented, using proton-proton collisions at a center-of-mass energy of 13 TeV, collected at the CERN LHC in 2016. The data sample corresponds to an integrated luminosity of 35.9 fb(-1). The results include measurements of the scale and resolution of (p) over right arrow (miss)(T), and detailed studies of events identified with anomalous (p) over right arrow (miss)(T). The performance is presented of a (p) over right arrow (miss)(T) reconstruction algorithm that mitigates the effects of multiple proton-proton interactions, using the "pileup per particle identification" method. The performance is shown of an algorithm used to estimate the compatibility of the reconstructed (p) over right arrow (miss)(T) with the hypothesis that it originates from resolution effects.Peer reviewe

    Nanoparticles having amphiphilic silane containing Chlorin e6 with strong anti-biofilm activity against periodontitis-related pathogens

    No full text
    © 2018 Elsevier Ltd Objectives: The objectives of this study were to: (1) develop the multifunctional nanoparticles containing Chlorin e6 (Ce6), Coumarin 6 (C6) and Fe3O4 nanoparticles (NPs); and (2) investigate the inhibitory effects of the nanoparticles via antibacterial photodynamic therapy (aPDT) against three species of periodontitis-related pathogens for the first time. Materials and methods: Ce6 and C6 were co-loaded into the Fe3O4-silane core-shell structure to form multifunctional nanoparticles (denoted “Fe3O4-silane@Ce6/C6 MNPs”). The physical and chemical properties of nanoparticles were characterized. Biofilm properties of Streptococcus sanguinis, Porphyromonas gingivalis and Fusobacterium nucleatum were tested. Colony-forming units (CFU), live/dead assay, and metabolic activity of biofilms were determined to evaluate the aPDT function mediated by the Fe3O4-silane@Ce6/C6 MNPs. Fluorescence imaging and the targeted antibacterial effects were also investigated. Results: Fe3O4-silane@Ce6/C6 MNPs showed superparamagnetic properties, chemical stability and water-solubility, with no cytotoxicity. Fe3O4 NPs did not compromise the emission peaks of C6 and Ce6. The Fe3O4-silane@Ce6/C6-mediated aPDT had much greater reduction in biofilms than the control groups (p \u3c 0.05). Biofilm CFU was reduced by about 4–5 orders of magnitude via Fe3O4-silane@Ce6/C6-mediated aPDT. The co-loading of Ce6 and C6 enabled the real-time aPDT monitoring by ratio emissions with the same wavelength. Fe3O4 with magnetic field enabled the targeting of infection sites by killing bacteria via magnetic field. Conclusion: The multifunctional nanoparticles exerted strong anti-biofilm activity against periodontitis-related pathogens, with excellent biocompatibility, real-time monitoring, and magnetically-targeting capacities. The multifunctional nanoparticles have great potential in antibacterial applications to inhibit the occurrence and progression of periodontitis

    Analyse experimentale des mecanismes de coercivite dans les aimants Nd-Fe-B frittes

    Get PDF
    SIGLECNRS T Bordereau / INIST-CNRS - Institut de l'Information Scientifique et TechniqueFRFranc
    corecore