639 research outputs found

    Analysis of 13 C and 14 C labeling in pyruvate and lactate in tumor and blood of lymphoma-bearing mice injected with 13 C- and 14 C-labeled pyruvate

    Get PDF
    Measurements of hyperpolarized 13C label exchange between injected [1‐13C]pyruvate and the endogenous tumor lactate pool can give an apparent first‐order rate constant for the exchange. The determination of the isotope flux, however, requires an estimate of the labeled pyruvate concentration in the tumor. This was achieved here by measurement of the tumor uptake of [1‐14C]pyruvate, which showed that <2% of the injected pyruvate reached the tumor site. Multiplication of this estimated labeled pyruvate concentration in the tumor with the apparent first‐order rate constant for hyperpolarized 13C label exchange gave an isotope flux that showed good agreement with a flux determined directly by the injection of non‐polarized [3‐13C]pyruvate, rapid excision of the tumor after 30 s and measurement of 13C‐labeled lactate concentrations in tumor extracts. The distribution of labeled lactate between intra‐ and extracellular compartments and the blood pool was investigated by imaging, by measurement of the labeled lactate concentration in blood and tumor, and by examination of the effects of a gadolinium contrast agent and a lactate transport inhibitor on the intensity of the hyperpolarized [1‐13C]lactate signal. These measurements showed that there was significant export of labeled lactate from the tumor, but that labeled lactate in the blood pool produced by the injection of hyperpolarized [1‐13C]pyruvate showed only relatively low levels of polarization. This study shows that measurements of hyperpolarized 13C label exchange between pyruvate and lactate in a murine tumor model can provide an estimate of the true isotope flux if the concentration of labeled pyruvate that reaches the tumor can be determined

    Uniaxial Phase Transition in Si : Ab initio Calculations

    Full text link
    Based on a previously proposed thermodynamic analysis, we study the relative stabilities of five Si phases under uniaxial compression using ab initio methods. The five phases are diamond, beta-tin, sh, sc, and hcp structures. The possible phase-transition patterns were investigated by considering the phase transitions between any two chosen phases of the five phases. By analyzing the different conributions to the relative pahse stability, we identified the most important factors in reducing the phase-transition pressures at uniaxial compression. We also show that it is possible to have phase transitions occur only when the phases are under uniaxial compression, in spite of no phase transition when under hydrostatic commpression. Taking all five phases into consideration, the phase diagram at uniaxial compression was constructed for pressures under 20 GPa. The stable phases were found to be diamond, beta-tin and sh structures, i.e. the same as those when under hydrostatic condition. According to the phase diagram, direct phase transition from the diamond to the sh phase is possible if the applied uniaxial pressures, on increasing, satisfy the condition of Px>Pz. Simiilarly, the sh-to-beta-tin transition on increeasing pressures is also possible if the applied uniaxial pressures are varied from the condition of Px>Pz, on which the phase of sh is stable, to that of Px<Pz, on which the beta-tin is stable

    Radiative Corrections to P-Levels in the Two-Body QED Problem

    Get PDF
    The physical origin of the mα5m\alpha^5 radiative corrections to PP-levels in the two-body QED problem is elucidated. Then we demonstrate that the next order, mα6m\alpha^6, corrections to those levels are due to the anomalous magnetic moment only.Comment: 6 pages, PSU/TH/14

    Ab initio study of the beta$-tin->Imma->sh phase transitions in silicon and germanium

    Full text link
    We have investigated the structural sequence of the high-pressure phases of silicon and germanium. We have focussed on the cd->beta-tin->Imma->sh phase transitions. We have used the plane-wave pseudopotential approach to the density-functional theory implemented within the Vienna ab-initio simulation package (VASP). We have determined the equilibrium properties of each structure and the values of the critical parameters including a hysteresis effect at the phase transitions. The order of the phase transitions has been obtained alternatively from the pressure dependence of the enthalpy and of the internal structure parameters. The commonly used tangent construction is shown to be very unreliable. Our calculations identify a first-order phase transition from the cd to the beta-tin and from the Imma to the sh phase, and they indicate the possibility of a second-order phase-transition from the beta-tin to the Imma phase. Finally, we have derived the enthalpy barriers between the phases.Comment: 12 pages, 16 figure

    Bending modes, elastic constants and mechanical stability of graphitic systems

    Get PDF
    The thermodynamic and mechanical properties of graphitic systems are strongly dependent on the shear elastic constant C44. Using state-of-the-art density functional calculations, we provide the first complete determination of their elastic constants and exfoliation energies. We show that stacking misorientations lead to a severe lowering of C44 of at least one order of magnitude. The lower exfoliation energy and the lower C44 (more bending modes) suggest that flakes with random stacking should be easier to exfoliate than the ones with perfect or rhombohedral stacking. We also predict ultralow friction behaviour in turbostratic graphitic systems.Comment: 7 pages, 6 figure

    The geometry of spontaneous spiking in neuronal networks

    Full text link
    The mathematical theory of pattern formation in electrically coupled networks of excitable neurons forced by small noise is presented in this work. Using the Freidlin-Wentzell large deviation theory for randomly perturbed dynamical systems and the elements of the algebraic graph theory, we identify and analyze the main regimes in the network dynamics in terms of the key control parameters: excitability, coupling strength, and network topology. The analysis reveals the geometry of spontaneous dynamics in electrically coupled network. Specifically, we show that the location of the minima of a certain continuous function on the surface of the unit n-cube encodes the most likely activity patterns generated by the network. By studying how the minima of this function evolve under the variation of the coupling strength, we describe the principal transformations in the network dynamics. The minimization problem is also used for the quantitative description of the main dynamical regimes and transitions between them. In particular, for the weak and strong coupling regimes, we present asymptotic formulas for the network activity rate as a function of the coupling strength and the degree of the network. The variational analysis is complemented by the stability analysis of the synchronous state in the strong coupling regime. The stability estimates reveal the contribution of the network connectivity and the properties of the cycle subspace associated with the graph of the network to its synchronization properties. This work is motivated by the experimental and modeling studies of the ensemble of neurons in the Locus Coeruleus, a nucleus in the brainstem involved in the regulation of cognitive performance and behavior

    Effects of mineralogy, chemistry and physical properties of basalts on carbon capture potential and plant-nutrient element release via enhanced weathering

    Get PDF
    Mafic igneous rocks, such as basalt, are composed of abundant calcium- and magnesium-rich silicate minerals widely proposed to be suitable for scalable carbon dioxide removal (CDR) by enhanced rock weathering (ERW). Here, we report a detailed characterization of the mineralogy, chemistry, particle size and surface area of six mined basalts being used in large-scale ERW field trials. We use 1-D reactive transport modelling (RTM) of soil profile processes to simulate inorganic CDR potential via cation flux (Mg2+, Ca2+, K+ and Na+) and assess the release of the essential plant nutrients phosphorus (P) and potassium (K) for a typical clay-loam agricultural soil. The basalts are primarily composed of pyroxene and plagioclase feldspar (up to 71 wt%), with accessory olivine, quartz, glass and alkali feldspar. Mean crushed particle size varies by a factor of 10, owing to differences in the mining operations and grinding processes. RTM simulations, based on measured mineral composition and N2-gas BET specific surface area (SSA), yielded potential CDR values of between c. 1.3 and 8.5 t CO2 ha−1 after 15 years following a baseline application of 50 t ha−1 basalt. The RTM results are comparative for the range of inputs that are described and should be considered illustrative for an agricultural soil. Nevertheless, they indicate that increasing the surface area for slow-weathering basalts through energy intensive grinding prior to field application in an ERW context may not be warranted in terms of additional CDR gains. We developed a function to convert CDR based on widely available and easily measured rock chemistry measures to more realistic determinations based on mineralogy. When applied to a chemistry dataset for >1300 basalt analyses from 25 large igneous provinces, we simulated cumulative CDR potentials of up to c. 8.5 t CO2 ha−1 after 30 years of weathering, assuming a single application of basalt with a SSA of 1 m2 g−1. Our RTM simulations suggest that ERW with basalt releases sufficient phosphorus (P) to substitute for typical arable crop P-fertiliser usage in Europe and the USA offering potential to reduce demand for expensive rock-derived P

    Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in √s = 7 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for the direct production of charginos and neutralinos in final states with three electrons or muons and missing transverse momentum is presented. The analysis is based on 4.7 fb−1 of proton–proton collision data delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with Standard Model expectations in three signal regions that are either depleted or enriched in Z-boson decays. Upper limits at 95% confidence level are set in R-parity conserving phenomenological minimal supersymmetric models and in simplified models, significantly extending previous results

    Jet size dependence of single jet suppression in lead-lead collisions at sqrt(s(NN)) = 2.76 TeV with the ATLAS detector at the LHC

    Get PDF
    Measurements of inclusive jet suppression in heavy ion collisions at the LHC provide direct sensitivity to the physics of jet quenching. In a sample of lead-lead collisions at sqrt(s) = 2.76 TeV corresponding to an integrated luminosity of approximately 7 inverse microbarns, ATLAS has measured jets with a calorimeter over the pseudorapidity interval |eta| < 2.1 and over the transverse momentum range 38 < pT < 210 GeV. Jets were reconstructed using the anti-kt algorithm with values for the distance parameter that determines the nominal jet radius of R = 0.2, 0.3, 0.4 and 0.5. The centrality dependence of the jet yield is characterized by the jet "central-to-peripheral ratio," Rcp. Jet production is found to be suppressed by approximately a factor of two in the 10% most central collisions relative to peripheral collisions. Rcp varies smoothly with centrality as characterized by the number of participating nucleons. The observed suppression is only weakly dependent on jet radius and transverse momentum. These results provide the first direct measurement of inclusive jet suppression in heavy ion collisions and complement previous measurements of dijet transverse energy imbalance at the LHC.Comment: 15 pages plus author list (30 pages total), 8 figures, 2 tables, submitted to Physics Letters B. All figures including auxiliary figures are available at http://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HION-2011-02
    • 

    corecore