219 research outputs found
Osteocytes and mechanical loading: The Wnt connection
Bone adapts to the mechanical forces that it experiences. Orthodontic tooth movement harnesses the cell‐ and tissue‐level properties of mechanotransduction to achieve alignment and reorganization of the dentition. However, the mechanisms of action that permit bone resorption and formation in response to loads placed on the teeth are incompletely elucidated, though several mechanisms have been identified. Wnt/Lrp5 signalling in osteocytes is a key pathway that modulates bone tissue's response to load. Numerous mouse models that harbour knock‐in, knockout and transgenic/overexpression alleles targeting genes related to Wnt signalling point to the necessity of Wnt/Lrp5, and its localization to osteocytes, for proper mechanotransduction in bone. Alveolar bone is rich in osteocytes and is a highly mechanoresponsive tissue in which components of the canonical Wnt signalling cascade have been identified. As Wnt‐based agents become clinically available in the next several years, the major challenge that lies ahead will be to gain a more complete understanding of Wnt biology in alveolar bone so that improved/expedited tooth movement becomes a possibility
Exploring diffusion and sorption processes at the Mont Terri rock laboratory (Switzerland): lessons learned from 20 years of field research
Transport and retardation parameters of radionuclides, which are needed to perform a safety analysis for a deep geological repository for radioactive waste in a compacted claystone such as Opalinus Clay, must be based on a detailed understanding of the mobility of nuclides at different spatial scales (laboratory, field, geological unit). Thanks to steadily improving experimental designs, similar tracer compositions in different experiments and complementary small laboratory-scale diffusion tests, a unique and large database could be compiled. This paper presents the main findings of 20 years of diffusion and retention experiments at the Mont Terri rock laboratory and their impact on safety analysis
Sequential NMR assignments of labile protons in DNA using two-dimensional nuclear-Overhauser-enhancement spectroscopy with three jump-and-return pulse sequences
Two-dimensional nuclear Overhauser enhancement (NOESY) spectra of labile protons were recorded in H2O solutions of a protein and of a DNA duplex, using a modification of the standard NOESY experiment with all three 90 degree pulses replaced by jump-and-return sequences. For the protein as well as the DNA fragment the strategically important spectral regions could be recorded with good sensitivity and free of artifacts. Using this procedure, sequence-specific assignments were obtained for the imino protons, C2H of adenine, and C4NH2 of cytosine in a 23-base-pair DNA duplex which includes the 17-base-pair OR3 repressor binding site of bacteriophage lambda. Based on comparison with previously published results on the isolated OR3 binding site, these data were used for a study of chain termination effects on the chemical shifts of imino proton resonances of DNA duplexes
Evasion of anti-growth signaling: a key step in tumorigenesis and potential target for treatment and prophylaxis by natural compounds
The evasion of anti-growth signaling is an important characteristic of cancer cells. In order to continue to proliferate, cancer cells must somehow uncouple themselves from the many signals that exist to slow down cell growth. Here, we define the anti-growth signaling process, and review several important pathways involved in growth signaling: p53, phosphatase and tensin homolog (PTEN), retinoblastoma protein (Rb), Hippo, growth differentiation factor 15 (GDF15), AT-rich interactive domain 1A (ARID1A), Notch, insulin-like growth factor (IGF), and Krüppel-like factor 5 (KLF5) pathways. Aberrations in these processes in cancer cells involve mutations and thus the suppression of genes that prevent growth, as well as mutation and activation of genes involved in driving cell growth. Using these pathways as examples, we prioritize molecular targets that might be leveraged to promote anti-growth signaling in cancer cells. Interestingly, naturally-occurring phytochemicals found in human diets (either singly or as mixtures) may promote anti-growth signaling, and do so without the potentially adverse effects associated with synthetic chemicals. We review examples of naturally-occurring phytochemicals that may be applied to prevent cancer by antagonizing growth signaling, and propose one phytochemical for each pathway. These are: epigallocatechin-3-gallate (EGCG) for the Rb pathway, luteolin for p53, curcumin for PTEN, porphyrins for Hippo, genistein for GDF15, resveratrol for ARID1A, withaferin A for Notch and diguelin for the IGF1-receptor pathway. The coordination of anti-growth signaling and natural compound studies will provide insight into the future application of these compounds in the clinical setting
Constructing the HBV-human protein interaction network to understand the relationship between HBV and hepatocellular carcinoma
<p>Abstract</p> <p>Background</p> <p>Epidemiological studies have clearly validated the association between hepatitis B virus (HBV) infection and hepatocellular carcinoma (HCC). Patients with chronic HBV infection are at increased risk of HCC, in particular those with active liver disease and cirrhosis.</p> <p>Methods</p> <p>We catalogued all published interactions between HBV and human proteins, identifying 250 descriptions of HBV and human protein interactions and 146 unique human proteins that interact with HBV proteins by text mining.</p> <p>Results</p> <p>Integration of this data set into a reconstructed human interactome showed that cellular proteins interacting with HBV are made up of core proteins that are interconnected with many pathways. A global analysis based on functional annotation highlighted the enrichment of cellular pathways targeted by HBV.</p> <p>Conclusions</p> <p>By connecting the cellular proteins targeted by HBV, we have constructed a central network of proteins associated with hepatocellular carcinoma, which might be to regard as the basis of a detailed map for tracking new cellular interactions, and guiding future investigations.</p
First-in-Human Phase I Study of MP0250, a First-in-Class DARPin Drug Candidate Targeting VEGF and HGF, in Patients With Advanced Solid Tumors.
PURPOSE: A first-in-human study was performed with MP0250, a DARPin drug candidate. MP0250 specifically inhibits both vascular endothelial growth factor (VEGF) and hepatocyte growth factor (HGF) with the aim of disrupting the tumor microenvironment. PATIENTS AND METHODS: A multicenter, open-label, repeated-dose, phase I study was conducted to assess the safety, tolerability, and pharmacokinetics of MP0250 in 45 patients with advanced solid tumors. In the dose-escalation part, 24 patients received MP0250 as a 3-hour infusion once every 2 weeks at five different dose levels (0.5-12 mg/kg). Once the maximum tolerated dose (MTD) was established, 21 patients were treated with a 1-hour infusion (n = 13, 8 mg/kg, once every 2 weeks and n = 8, 12 mg/kg, once every 3 weeks) of MP0250 in the dose confirmation cohorts. RESULTS: In the dose-escalation cohort, patients treated with 12 mg/kg MP0250 once every 2 weeks experienced dose-limiting toxicities. Therefore, MTD was 8 mg/kg once every 2 weeks or 12 mg/kg once every 3 weeks. The most common adverse events (AEs) were hypertension (69%), proteinuria (51%), and diarrhea and nausea (both 36%); hypoalbuminemia was reported in 24% of patients. Most AEs were consistent with inhibition of the VEGF and HGF pathways. Exposure was dose-proportional and sustained throughout the dosing period for all patients (up to 15 months). The half-life was about 2 weeks. Signs of single-agent antitumor activity were observed: 1 unconfirmed partial response with a time to progression of 23 weeks and 24 patients with stable disease, with the longest duration of 72 weeks and a median duration of 18 weeks. CONCLUSION: MP0250 is a first-in-class DARPin drug candidate with suitable tolerability and appropriate pharmacokinetic properties for further development in combination with other anticancer therapies
Prostaglandin E2 Signals Through PTGER2 to Regulate Sclerostin Expression
The Wnt signaling pathway is a robust regulator of skeletal homeostasis. Gain-of-function mutations promote high bone mass, whereas loss of Lrp5 or Lrp6 co-receptors decrease bone mass. Similarly, mutations in antagonists of Wnt signaling influence skeletal integrity, in an inverse relation to Lrp receptor mutations. Loss of the Wnt antagonist Sclerostin (Sost) produces the generalized skeletal hyperostotic condition of sclerosteosis, which is characterized by increased bone mass and density due to hyperactive osteoblast function. Here we demonstrate that prostaglandin E2 (PGE2), a paracrine factor with pleiotropic effects on osteoblasts and osteoclasts, decreases Sclerostin expression in osteoblastic UMR106.01 cells. Decreased Sost expression correlates with increased expression of Wnt/TCF target genes Axin2 and Tcf3. We also show that the suppressive effect of PGE2 is mediated through a cyclic AMP/PKA pathway. Furthermore, selective agonists for the PGE2 receptor EP2 mimic the effect of PGE2 upon Sost, and siRNA reduction in Ptger2 prevents PGE2-induced Sost repression. These results indicate a functional relationship between prostaglandins and the Wnt/β-catenin signaling pathway in bone
Therapeutic potential of cladribine in combination with STAT3 inhibitor against multiple myeloma
<p>Abstract</p> <p>Background</p> <p>Cladribine or 2-chlorodeoxyadenosine (2-CDA) is a well-known purine nucleoside analog with particular activity against lymphoproliferative disorders, such as hairy cell leukemia (HCL). Its benefits in multiple myeloma (MM) remain unclear. Here we report the inhibitory effects of cladribine on MM cell lines (U266, RPMI8226, MM1.S), and its therapeutic potential in combination with a specific inhibitor of the signal transducer and activator of transcription 3 (STAT3).</p> <p>Methods</p> <p>MTS-based proliferation assays were used to determine cell viability in response to cladribine. Cell cycle progression was examined by flow cytometry analysis. Cells undergoing apoptosis were evaluated with Annexin V staining and a specific ELISA to quantitatively measure cytoplasmic histone-associated DNA fragments. Western blot analyses were performed to determine the protein expression levels and activation.</p> <p>Results</p> <p>Cladribine inhibited cell proliferation of MM cells in a dose-dependent manner, although the three MM cell lines exhibited a remarkably different responsiveness to cladribine. The IC50 of cladribine for U266, RPMI8226, or MM1.S cells was approximately 2.43, 0.75, or 0.18 μmol/L, respectively. Treatment with cladribine resulted in a significant G1 arrest in U266 and RPMI8226 cells, but only a minor increase in the G1 phase for MM1.S cells. Apoptosis assays with Annexin V-FITC/PI double staining indicated that cladribine induced apoptosis of U266 cells in a dose-dependent manner. Similar results were obtained with an apoptotic-ELISA showing that cladribine dramatically promoted MM1.S and RPMA8226 cells undergoing apoptosis. On the molecular level, cladribine induced PARP cleavage and activation of caspase-8 and caspase-3. Meanwhile, treatment with cladribine led to a remarkable reduction of the phosphorylated STAT3 (P-STAT3), but had little effect on STAT3 protein levels. The combinations of cladribine and a specific STAT3 inhibitor as compared to either agent alone significantly induced apoptosis in all three MM cell lines.</p> <p>Conclusions</p> <p>Cladribine exhibited inhibitory effects on MM cells <it>in vitro</it>. MM1.S is the only cell line showing significant response to the clinically achievable concentrations of cladribine-induced apoptosis and inactivation of STAT3. Our data suggest that MM patients with the features of MM1.S cells may particularly benefit from cladribine monotherapy, whereas cladribine in combination with STAT3 inhibitor exerts a broader therapeutic potential against MM.</p
Sclerostin: Current Knowledge and Future Perspectives
In recent years study of rare human bone disorders has led to the identification of important signaling pathways that regulate bone formation. Such diseases include the bone sclerosing dysplasias sclerosteosis and van Buchem disease, which are due to deficiency of sclerostin, a protein secreted by osteocytes that inhibits bone formation by osteoblasts. The restricted expression pattern of sclerostin in the skeleton and the exclusive bone phenotype of good quality of patients with sclerosteosis and van Buchem disease provide the basis for the design of therapeutics that stimulate bone formation. We review here current knowledge of the regulation of the expression and formation of sclerostin, its mechanism of action, and its potential as a bone-building treatment for patients with osteoporosis
- …