619 research outputs found

    How do you say ‘hello’? Personality impressions from brief novel voices

    Get PDF
    On hearing a novel voice, listeners readily form personality impressions of that speaker. Accurate or not, these impressions are known to affect subsequent interactions; yet the underlying psychological and acoustical bases remain poorly understood. Furthermore, hitherto studies have focussed on extended speech as opposed to analysing the instantaneous impressions we obtain from first experience. In this paper, through a mass online rating experiment, 320 participants rated 64 sub-second vocal utterances of the word ‘hello’ on one of 10 personality traits. We show that: (1) personality judgements of brief utterances from unfamiliar speakers are consistent across listeners; (2) a two-dimensional ‘social voice space’ with axes mapping Valence (Trust, Likeability) and Dominance, each driven by differing combinations of vocal acoustics, adequately summarises ratings in both male and female voices; and (3) a positive combination of Valence and Dominance results in increased perceived male vocal Attractiveness, whereas perceived female vocal Attractiveness is largely controlled by increasing Valence. Results are discussed in relation to the rapid evaluation of personality and, in turn, the intent of others, as being driven by survival mechanisms via approach or avoidance behaviours. These findings provide empirical bases for predicting personality impressions from acoustical analyses of short utterances and for generating desired personality impressions in artificial voices

    Obscured phylogeny and possible recombinational dormancy in Escherichia coli

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Escherichia coli </it>is one of the best studied organisms in all of biology, but its phylogenetic structure has been difficult to resolve with current data and analytical techniques. We analyzed single nucleotide polymorphisms in chromosomes of representative strains to reconstruct the topology of its emergence.</p> <p>Results</p> <p>The phylogeny of <it>E. coli </it>varies according to the segment of chromosome analyzed. Recombination between extant <it>E. coli </it>groups is largely limited to only three intergroup pairings.</p> <p>Conclusions</p> <p>Segment-dependent phylogenies most likely are legacies of a complex recombination history. However, <it>E. coli </it>are now in an epoch in which they no longer broadly share DNA. Using the definition of species as organisms that freely exchange genetic material, this recombinational dormancy could reflect either the end of <it>E. coli </it>as a species, or herald the coalescence of <it>E. coli </it>groups into new species.</p

    Shrinking and Splitting of drainage basins in orogenic landscapes from the migration of the main drainage divide

    No full text
    International audienceClimate, and in particular **the spatial pattern of precipitation, is thought to affect* *the topographic and tectonic evolution of mountain belts through erosion. Numerical model simulations of landscape erosion controlled **by horizontal tectonic motion or orographic precipitation result in the asymmetric topography that characterizes most natural mountain belts, and in a continuous migration of the main drainage divide. The effects of such a migration have, however, been challenging to observe in natural settings. Here I document the effects of a lateral precipitation gradient on a landscape undergoing constant uplift in a laboratory modelling experiment. In the experiment, the drainage divide migrates towards the drier, leeward side of the mountain range, causing the drainage basins on the leeward side to shrink and split into* *smaller basins. This mechanism results in a progressively increasing number of drainage basins on the leeward side of the mountain range as the divide migrates, such that the expected relationship between the spacing of drainage basins and the location of the main drainage divide is maintained. I propose that this mechanism could clarify the drainage divide migration and topographic asymmetry found in active orogenic mountain ranges, as exemplified by the Aconquija Range of Argentin

    Gene polymorphisms of superoxide dismutases and catalase in diabetes mellitus

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Reactive oxygen species generated by hyperglycaemia modify structure and function of lipids, proteins and other molecules taking part in chronic vascular changes in diabetes mellitus (DM). Low activity of scavenger enzymes has been observed in patients with DM. Protective role of scavenger enzymes may be deteriorated by oxidative stress. This study was undertaken to investigate the association between gene polymorphisms of selected antioxidant enzymes and vascular complications of DM.</p> <p>Results</p> <p>Significant differences in allele and genotype distribution among T1DM, T2DM and control persons were found in SOD1 and SOD2 genes but not in CAT gene (p < 0,01). Serum SOD activity was significantly decreased in T1DM and T2DM subjects compared to the control subjects (p < 0,05). SOD1 and SOD2 polymorphisms may affect SOD activity. Serum SOD activity was higher in CC than in TT genotype of SOD2 gene (p < 0,05) and higher in AA than in CC genotype of SOD1 gene (p < 0,05). Better diabetes control was found in patients with CC than with TT genotype of SOD2 gene. Significantly different allele and genotype frequencies of SOD2 gene polymorphism were found among diabetic patients with macroangiopathy and those without it. No difference was associated with microangiopathy in all studied genes.</p> <p>Conclusion</p> <p>The results of our study demonstrate that oxidative stress in DM can be accelerated not only due to increased production of ROS caused by hyperglycaemia but also by reduced ability of antioxidant defense system caused at least partly by SNPs of some scavenger enzymes.</p

    Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector

    Get PDF
    Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente

    The Re-Establishment of Desiccation Tolerance in Germinated Arabidopsis thaliana Seeds and Its Associated Transcriptome

    Get PDF
    The combination of robust physiological models with “omics” studies holds promise for the discovery of genes and pathways linked to how organisms deal with drying. Here we used a transcriptomics approach in combination with an in vivo physiological model of re-establishment of desiccation tolerance (DT) in Arabidopsis thaliana seeds. We show that the incubation of desiccation sensitive (DS) germinated Arabidopsis seeds in a polyethylene glycol (PEG) solution re-induces the mechanisms necessary for expression of DT. Based on a SNP-tile array gene expression profile, our data indicates that the re-establishment of DT, in this system, is related to a programmed reversion from a metabolic active to a quiescent state similar to prior to germination. Our findings show that transcripts of germinated seeds after the PEG-treatment are dominated by those encoding LEA, seed storage and dormancy related proteins. On the other hand, a massive repression of genes belonging to many other classes such as photosynthesis, cell wall modification and energy metabolism occurs in parallel. Furthermore, comparison with a similar system for Medicago truncatula reveals a significant overlap between the two transcriptomes. Such overlap may highlight core mechanisms and key regulators of the trait DT. Taking into account the availability of the many genetic and molecular resources for Arabidopsis, the described system may prove useful for unraveling DT in higher plants

    Synergy between inhibitors of androgen receptor and MEK has therapeutic implications in estrogen receptor-negative breast cancer

    Get PDF
    Introduction: Estrogen receptor-negative (ER-) breast cancer is a heterogeneous disease with limited therapeutic options. The molecular apocrine subtype constitutes 50% of ER-tumors and is characterized by overexpression of steroid response genes including androgen receptor (AR). We have recently identified a positive feedback loop between the AR and extracellular signal-regulated kinase (ERK) signaling pathways in the molecular apocrine subtype. In this feedback loop, AR regulates ERK phosphorylation through the mediation of ErbB2 and, in turn, ERK-CREB1 signaling regulates the transcription of AR in molecular apocrine cells. In this study, we investigated the therapeutic implications of the AR-ERK feedback loop in molecular apocrine breast cancer.Methods: We examined a synergy between the AR inhibitor flutamide and the MEK inhibitor CI-1040 in the molecular apocrine cell lines MDA-MB-453, HCC-1954 and HCC-202 using MTT cell viability and annexin V apoptosis assays. Synergy was measured using the combination index (CI) method. Furthermore, we examined in vivo synergy between flutamide and the MEK inhibitor PD0325901 in a xenograft model of the molecular apocrine subtype. The effects of in vivo therapies on tumor growth, cell proliferation and angiogenesis were assessed.Results: We demonstrate synergistic CI values for combination therapy with flutamide and CI-1040 across three molecular apocrine cell lines at four dose combinations using both cell viability and apoptosis assays. Furthermore, we show in vivo that combination therapy with flutamide and MEK inhibitor PD0325901 has a significantly higher therapeutic efficacy in reducing tumor growth, cellular proliferation and angiogenesis than monotherapy with these agents. Moreover, our data suggested that flutamide and CI-1040 have synergy in trastuzumab resistance models of the molecular apocrine subtype. Notably, the therapeutic effect of combination therapy in trastuzumab-resistant cells was associated with the abrogation of an increased level of ERK phosphorylation that was developed in the process of trastuzumab resistance.Conclusions: In this study, we demonstrate in vitro and in vivo synergies between AR and MEK inhibitors in molecular apocrine breast cancer. Furthermore, we show that combination therapy with these inhibitors can overcome trastuzumab resistance in molecular apocrine cells. Therefore, a combination therapy strategy with AR and MEK inhibitors may provide an attractive therapeutic option for the ER-/AR+ subtype of breast cancer

    Gene expression profiling in primary breast cancer distinguishes patients developing local recurrence after breast-conservation surgery, with or without postoperative radiotherapy

    Get PDF
    Introduction Some patients with breast cancer develop local recurrence after breast-conservation surgery despite postoperative radiotherapy, whereas others remain free of local recurrence even in the absence of radiotherapy. As clinical parameters are insufficient for identifying these two groups of patients, we investigated whether gene expression profiling would add further information. Methods We performed gene expression analysis (oligonucleotide arrays, 26,824 reporters) on 143 patients with lymph node-negative disease and tumor-free margins. A support vector machine was employed to build classifiers using leave-one-out cross-validation. Results Within the estrogen receptor-positive (ER+) subgroup, the gene expression profile clearly distinguished patients with local recurrence after radiotherapy (n = 20) from those without local recurrence (n = 80 with or without radiotherapy). The receiver operating characteristic (ROC) area was 0.91, and 5,237 of 26,824 reporters had a P value of less than 0.001 (false discovery rate = 0.005). This gene expression profile provides substantially added value to conventional clinical markers (for example, age, histological grade, and tumor size) in predicting local recurrence despite radiotherapy. Within the ER- subgroup, a weaker, but still significant, signal was found (ROC area = 0.74). The ROC area for distinguishing patients who develop local recurrence from those who remain local recurrence-free in the absence of radiotherapy was 0.66 (combined ER+/ER-). Conclusion A highly distinct gene expression profile for patients developing local recurrence after breast-conservation surgery despite radiotherapy has been identified. If verified in further studies, this profile might be a most important tool in the decision making for surgery and adjuvant therapy

    Patterns of Cis Regulatory Variation in Diverse Human Populations

    Get PDF
    The genetic basis of gene expression variation has long been studied with the aim to understand the landscape of regulatory variants, but also more recently to assist in the interpretation and elucidation of disease signals. To date, many studies have looked in specific tissues and population-based samples, but there has been limited assessment of the degree of inter-population variability in regulatory variation. We analyzed genome-wide gene expression in lymphoblastoid cell lines from a total of 726 individuals from 8 global populations from the HapMap3 project and correlated gene expression levels with HapMap3 SNPs located in cis to the genes. We describe the influence of ancestry on gene expression levels within and between these diverse human populations and uncover a non-negligible impact on global patterns of gene expression. We further dissect the specific functional pathways differentiated between populations. We also identify 5,691 expression quantitative trait loci (eQTLs) after controlling for both non-genetic factors and population admixture and observe that half of the cis-eQTLs are replicated in one or more of the populations. We highlight patterns of eQTL-sharing between populations, which are partially determined by population genetic relatedness, and discover significant sharing of eQTL effects between Asians, European-admixed, and African subpopulations. Specifically, we observe that both the effect size and the direction of effect for eQTLs are highly conserved across populations. We observe an increasing proximity of eQTLs toward the transcription start site as sharing of eQTLs among populations increases, highlighting that variants close to TSS have stronger effects and therefore are more likely to be detected across a wider panel of populations. Together these results offer a unique picture and resource of the degree of differentiation among human populations in functional regulatory variation and provide an estimate for the transferability of complex trait variants across populations

    Conservation, Variability and the Modeling of Active Protein Kinases

    Get PDF
    The human proteome is rich with protein kinases, and this richness has made the kinase of crucial importance in initiating and maintaining cell behavior. Elucidating cell signaling networks and manipulating their components to understand and alter behavior require well designed inhibitors. These inhibitors are needed in culture to cause and study network perturbations, and the same compounds can be used as drugs to treat disease. Understanding the structural biology of protein kinases in detail, including their commonalities, differences and modes of substrate interaction, is necessary for designing high quality inhibitors that will be of true use for cell biology and disease therapy. To this end, we here report on a structural analysis of all available active-conformation protein kinases, discussing residue conservation, the novel features of such conservation, unique properties of atypical kinases and variability in the context of substrate binding. We also demonstrate how this information can be used for structure prediction. Our findings will be of use not only in understanding protein kinase function and evolution, but they highlight the flaws inherent in kinase drug design as commonly practiced and dictate an appropriate strategy for the sophisticated design of specific inhibitors for use in the laboratory and disease therapy
    corecore