11 research outputs found

    Comment on "The extent of forest in dryland biomes"

    Get PDF
    Bastin et al (Reports, 12 May 2017, p. 635) infer forest as more globally extensive than previously estimated using tree cover data. However, their forest definition does not reflect ecosystem function or biotic composition. These structural and climatic definitions inflate forest estimates across the tropics and undermine conservation goals, leading to inappropriate management policies and practices in tropical grassy ecosystems

    Grazing lawns and overgrazing in frequently grazed grass communities

    Get PDF
    Frequent grazing can establish high forage value grazing lawns supporting high grazer densities, but can also produce overgrazed grass communities with unpalatable or low grass basal cover, supporting few grazers. Attempts to create grazing lawns via concentrated grazing, with a goal to increase grazer numbers, are thus risky without knowing how environmental conditions influence the likelihood of each outcome. We collected grass species and trait data from 33 frequently grazed grass communities across eastern South Africa (28 sites) and the Serengeti National Park, Tanzania (five sites), covering wide rainfall (336-987 mm year-1) and soil (e.g., 44%-93% sand) gradients. We identified four grass growth forms using hierarchical clustering on principal components analyses of trait data and assessed trait-environment and growth form-environment relationships using fourth corner and principal components analyses. We distinguished two palatable grass growth forms that both attract yet resist grazers and comprise grazing lawns: (1) "lateral attractors" that spread vegetatively via stolons and rhizomes, and (2) "tufted attractors" that form isolated tufts and may have alternate tall growth forms. By contrast, (3) tough, upright, tufted "resisters," and (4) "avoiders" with sparse architectures or that grow appressed to the soil surface, are of little forage value and avoided by grazers. Grazing lawns occurred across a wide range of conditions, typically comprising lateral attractor grasses in drier, sandy environments, and tufted attractor grasses in wetter, low-sand environments. Resisters occurred on clay-rich soils in mesic areas, while avoiders were widespread but scarce. While grazing lawns can be established under most conditions, monitoring their composition and cover is important, as the potential for overgrazing seems as widely relevant. Tufted attractor-dominated lawns appear somewhat more vulnerable to degradation than lateral attractor-dominated lawns. Increased avoider and resister abundance both reduce forage value, although resisters may provide better soil protection

    Drought and fire determine juvenile and adult woody diversity and dominance in a semi-arid African savanna

    Get PDF
    AbstractThe aim of this study was to understand how communities of adult and juvenile (seedlings and saplings) woody plants were impacted by fire and the 2014–2016 El Niño drought in Kruger National Park, South Africa. We used a landscape‐scale fire experiment spanning 2013–2019 in a semi‐arid savanna in the central west of Kruger National Park (mean annual precipitation, 543 mm). Adult and juvenile woody species composition were recorded during and after the drought in 40 plots that experienced a mix of no fire, moderate fire, and frequent fire treatments. Using multivariate modeling, we related community composition in juvenile and adult woody plants to year of sampling and the experimental fire treatments. Post‐drought, there was significant adult woody plant top‐kill, especially in dominant species Dichrostachys cinerea (81% reduction in abundance), Acacia nigrescens (30%), and Combretum apiculatum (19%), but there was no significant change in adult species richness. Two years post‐drought, abundance of all juveniles decreased by 35%, and species richness increased in juveniles in both the frequent fire (7%) and no fire treatments (32%). Counter‐intuitively, the El Niño drought increased species richness of the woody plant community due to the recruitment of new species as juveniles, a potential lasting impact on diversity, and where different fire regimes were associated with differences in community composition. Drought events in semi‐arid savannas could drive temporal dynamics in species richness and composition in previously unrecognized ways.</jats:p

    Guidelines for the use and interpretation of assays for monitoring autophagy

    No full text
    In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. A key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process vs. those that measure flux through the autophagy pathway (i.e., the complete process); thus, a block in macroautophagy that results in autophagosome accumulation needs to be differentiated from stimuli that result in increased autophagic activity, defined as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (in most higher eukaryotes and some protists such as Dictyostelium) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the field understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field

    Guidelines for the use and interpretation of assays for monitoring autophagy

    No full text

    Guidelines for the use and interpretation of assays for monitoring autophagy

    No full text
    In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. A key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process vs. those that measure flux through the autophagy pathway (i.e., the complete process); thus, a block in macroautophagy that results in autophagosome accumulation needs to be differentiated from stimuli that result in increased autophagic activity, defined as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (in most higher eukaryotes and some protists such as Dictyostelium) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the field understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field

    Guidelines for the use and interpretation of assays for monitoring autophagy

    No full text

    Guidelines for the use and interpretation of assays for monitoring autophagy

    Get PDF
    In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. A key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process vs. those that measure flux through the autophagy pathway (i.e., the complete process); thus, a block in macroautophagy that results in autophagosome accumulation needs to be differentiated from stimuli that result in increased autophagic activity, defined as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (in most higher eukaryotes and some protists such as Dictyostelium) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the field understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field
    corecore