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Abstract (60/60 words):  53 

Bastin et al (Reports, 12 May 2017, p. 635) infer forest as more globally extensive than 54 

previously estimated using tree cover data. However, their forest definition does not reflect 55 

ecosystem function or biotic composition. These structural and climatic definitions inflate forest 56 

estimates across the tropics and undermine conservation goals leading to inappropriate 57 

management policies and practices in tropical grassy ecosystems. 58 

 59 

Main text (824/1000 words; 15/15 references; 2/2 Figures):  60 

Bastin et al (1) used high-resolution Google Earth images to estimate tree canopy cover in 61 

213,795 (0.5 ha) globally distributed plots. Extrapolation of these plot-level data produced a 62 

forest cover classification where they concluded “dry forests” cover ~ 40% more of the global 63 

land area than previously estimated, increasing global forest cover estimates by 9%. However, 64 

their calculation of forest extent is based on a structural definition adopted by the Food and 65 

Agriculture Organization of the United Nations (FAO), where areas greater than 0.5 hectares and 66 

with more than 10% tree cover are considered forest (1). As a consequence of applying the FAO 67 

forest definition, Bastin et al (1) misclassify as dry forest many tropical regions that are in fact 68 

savannas. Savannas differ from forests in having a continuous grassy ground layer which 69 

supports fire and grazing mammals. These disturbances select for functionally distinct plant traits 70 

and species that are different from forests in their biodiversity and ecosystem services (2, 3). 71 
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Bastin et al (1) refer to plots with 10-40% tree cover as open forest and over 40% as closed 72 

forest. These “forest” classes clearly overlap with savannas which can range in tree cover from 0 73 

– 80% (4). Tree cover has been previously demonstrated as an unreliable metric by which to 74 

differentiate forest and savanna (3), and sites classified by Bastin et al (1) as forest include iconic 75 

savannas such as Kruger National Park (Fig 1). Additionally, the FAO “forest” definition applied 76 

by Bastin et al (1) includes sites where tree cover is “temporarily under 10% but is expected to 77 

recover,” an unclear guideline implying degradation rather than accounting for known temporal 78 

variability in savanna tree cover (5–7). Consequently, the majority of “new” forest identified 79 

here resulted from the misclassification of tropical savannas as “forests” (Bastin et al Fig 80 

S12)(8).  81 

 82 

Implications of misclassification of savanna as forest include support for afforestation, 83 

modification of mammalian grazer and browser regimes, and fire suppression policies (9), as fire 84 

and large herbivores are generally considered to be at odds with the integrity of forest 85 

ecosystems (2, 10, 11). In contrast, it is the loss of these processes in many savannas that results 86 

in their degradation (8). Over millions of years, fires and herbivores have driven the evolution of 87 

herbaceous plants with belowground buds, underground trees and trees with thick insulating 88 

bark, traits which make savanna species functionally distinct from forest species (5, 9). 89 

Afforestation and fire suppression policies in savannas risk destroying a wealth of specialized 90 

and endemic savanna biodiversity that underpin unique ecological processes, and compromising 91 

ecosystem functions such as carbon cycling and water and energy exchange (5, 6, 9, 11, 12). 92 

Further, afforestation strategies negatively impact grassy ecosystem function by altering the 93 

hydrology and/or trophic structure (2, 8) of entire landscapes. Many of the sites identified by 94 

Bastin et al (1) as forest fall within areas identified as opportunities for “forest and landscape 95 

restoration” (6), increasing the very real risk that misclassification could misdirect afforestation 96 

policies (8).  97 

 98 

Further underlying the misclassification of savanna is an assumption that biomes can be 99 

delineated using a single simple metric of climate (i.e., aridity index). Using a threshold aridity 100 

index (0.65) belies the rich ecological complexity in identification and characterization of 101 

biomes, the subject of debate for a century (reviewed in 11). Historical contingencies in the 102 



distribution and evolution of plant lineages and their associated functional traits generate critical 103 

biogeographic variation in the limits of biomes and their dynamics in response to climate (e.g., 104 

savannas across continents) (14). Because of this complexity, the climate threshold in Bastin et 105 

al (1) also misclassifies some wet Neotropical forests (in Amazonian Ecuador and Peru, and on 106 

the Pacific coast of Ecuador and Colombia) as dry forest (15). Recent evidence overwhelmingly 107 

shows that definitions of forest based solely on tree cover or climate thresholds ignores key 108 

functional difference between closed and open canopy vegetation types (2, 3, 6, 8).  109 

 110 

Many of the ecosystems identified by Bastin et al (1) are not forest but savannas (3, 5) where 111 

low tree cover is the result of natural processes (4, 5, 8, 9). Their aim was “to accurately 112 

determine how much forest and tree cover remains in dryland biomes” (p.635). This aim implies 113 

that dryland systems were once widely forested, which is incorrect. In Figure 2, we map 114 

locations derived from (5) providing fossil evidence that many “forest” sites in Bastin et al (1) 115 

have supported tree-grass mosaic vegetation over millennia. Conservation policies should reflect 116 

savanna antiquity and not equate low tree cover with degradation. Moreover, although we have 117 

focused on savannas, the inflation of forest extent could equally hamper conservation in other 118 

threatened forests. An example is the dry forests of Latin America, which lack adequate 119 

protected areas to safeguard their unique and geographically heterogeneous flora (15). While the 120 

data collected by Bastin et al (1) are impressive and potentially useful, the use of the FAO forest 121 

definition is damaging to conservation goals across the tropics. 122 
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Figures:  165 

 166 

Figure 1. Examples of savannas, with continuous grass layers and discontinuous tree canopies, 167 

that are misclassified as forests by the FAO 10% tree cover threshold in Bastin et al (1). (A) 168 

Acacia-grass mixture from Australia, functionally a savanna according to contemporary 169 

ecological understanding. This is Fig S3 from Bastin et al (1). (B) Combretum savanna in Kruger 170 

National Park, South Africa. Photo credit: CLP. (C) South-Sahel site in Lakamané, Mali. This 171 

site has ~12.4% tree cover, is heavily grazed and experiences frequent fires. Photo credit: NPH. 172 

(D) Savanna from Isalo National Park, Madagascar. Photo credit: CERL. (E) Savanna (cerrado) 173 

in eastern lowland Bolivia. This site is within the “dry subhumid” zone in Bastin et al and 174 

experiences frequent fires. Photo credit: JWV. (F) Long-term monitoring plot in an Anogeissus-175 

Terminalia-Chloroxylon savanna in Amrabad Tiger Reserve, southern India. Photo credit: JR. 176 



  177 

 178 

Figure 2. Forest distribution in “drylands,” from Bastin et al (2017), where points (red dots) 179 

highlight areas where fossil evidence (e.g., fossil floras and faunas, stable carbon isotopes) has 180 

demonstrated past occurrence (>0.5 million years ago, but mainly 4-22 million years ago) of 181 

grass-dominated habitats and their faunas across continents (5). Although savanna extent has 182 

shifted with changing climates and disturbance regimes and exact compositions have changed 183 

during the last 22 million years, it is abundantly clear these regions have deep evolutionary roots 184 

as mixed tree-grass systems (5). Note: ocean points represent paleovegetation data reconstructed 185 

from marine cores.  186 
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