1,364 research outputs found

    Aging and passivation of magnetic properties in Co/Gd bilayers

    Get PDF
    Synthetic ferrimagnets based on Co and Gd bear promise for directly bridging the gap between volatile information in the photonic domain and non-volatile information in the magnetic domain, without the need for any intermediary electronic conversion. Specifically, these systems exhibit strong spin-orbit torque effects, fast domain wall motion and single-pulse all-optical switching of the magnetization. An important open challenge to bring these materials to the brink of applications is to achieve long-term stability of their magnetic properties. In this work, we address the time-evolution of the magnetic moment and compensation temperature of magnetron sputter grown Pt/Co/Gd trilayers with various capping layers. Over the course of three months, the net magnetic moment and compensation temperature change significantly, which we attribute to quenching of the Gd magnetization. We identify that intermixing of the capping layer and Gd is primarily responsible for this effect, which can be alleviated by choosing nitrides for capping as long as reduction of nitride to oxide is properly addressed. In short, this work provides an overview of the relevant aging effects that should be taken into account when designing synthetic ferrimagnets based on Co and Gd for spintronic applications.Synthetic ferrimagnets based on Co and Gd bear promise for directly bridging the gap between volatile information in the photonic domain and non-volatile information in the magnetic domain, without the need for any intermediary electronic conversion. Specifically, these systems exhibit strong spin-orbit torque effects, fast domain wall motionand single-pulse all-optical switching of the magnetization. An important open challenge to bring these materials to the brink of applications is to achieve long-term stability of their magnetic properties. In this work, we address the time-evolution of the magnetic moment and compensation temperature of magnetron sputter grown Pt/Co/Gd trilayerswith various capping layers. Over the course of three months, the net magnetic moment and compensation temperature change significantly, which we attribute to quenching of the Gd magnetization. We identify that intermixing of the capping layer and Gd is primarily responsible for this effect, which can be alleviated by choosing nitrides for cappingas long as reduction of nitride to oxide is properly addressed. In short, this work provides an overview of the relevant aging effects that should be taken into account when designing synthetic ferrimagnets based on Co and Gd for spintronic applications

    Magnetotransport properties of iron microwires fabricated by focused electron beam induced autocatalytic growth

    Full text link
    We have prepared iron microwires in a combination of focused electron beam induced deposition (FEBID) and autocatalytic growth from the iron pentacarbonyl, Fe(CO)5, precursor gas under UHV conditions. The electrical transport properties of the microwires were investigated and it was found that the temperature dependence of the longitudinal resistivity (rhoxx) shows a typical metallic behaviour with a room temperature value of about 88 micro{\Omega} cm. In order to investigate the magnetotransport properties we have measured the isothermal Hall-resistivities in the range between 4.2 K and 260 K. From these measurements positive values for the ordinary and the anomalous Hall coefficients were derived. The relation between anomalous Hall resistivity (rhoAN) and longitudinal resistivity is quadratic, rhoAN rho^2 xx, revealing an intrinsic origin of the anomalous Hall effect. Finally, at low temperature in the transversal geometry a negative magnetoresistance of about 0.2 % was measured

    Aging and passivation of magnetic properties in Co/Gd bilayers

    Full text link
    Synthetic ferrimagnets based on Co and Gd bear promise for directly bridging the gap between volatile information in the photonic domain and non-volatile information in the magnetic domain, without the need for any intermediary electronic conversion. Specifically, these systems exhibit strong spin-orbit torque effects, fast domain wall motion and single-pulse all-optical switching of the magnetization. An important open challenge to bring these materials to the brink of applications is to achieve long-term stability of their magnetic properties. In this work, we address the time-evolution of the magnetic moment and compensation temperature of magnetron sputter grown Pt/Co/Gd trilayers with various capping layers. Over the course of three months, the net magnetic moment and compensation temperature change significantly, which we attribute to quenching of the Gd magnetization. We identify that intermixing of the capping layer and Gd is primarily responsible for this effect, which can be alleviated by choosing nitrides for capping as long as reduction of nitride to oxide is properly addressed. In short, this work provides an overview of the relevant aging effects that should be taken into account when designing synthetic ferrimagnets based on Co and Gd for spintronic applications.Comment: 9 pages, 5 figure

    Exploiting variability for energy optimization of parallel programs

    Full text link
    In this paper we present optimizations that use DVFS mechanisms to reduce the total energy usage in scientific applications. Our main insight is that noise is intrinsic to large scale parallel executions and it appears whenever shared resources are contended. The presence of noise allows us to identify and manipulate any program regions amenable to DVFS. When compared to previous energy optimizations that make per core decisions using predictions of the running time, our scheme uses a qualitative approach to recognize the signature of executions amenable to DVFS. By recognizing the "shape of variability" we can optimize codes with highly dynamic behavior, which pose challenges to all existing DVFS techniques. We validate our approach using offline and online analyses for one-sided and two-sided communication paradigms. We have applied our methods to NWChem, and we show best case improvements in energy use of 12% at no loss in performance when using online optimizations running on 720 Haswell cores with one-sided communication. With NWChem on MPI two-sided and offline analysis, capturing the initialization, we find energy savings of up to 20%, with less than 1% performance cost

    Barrier elision for production parallel programs

    Full text link
    Large scientific code bases are often composed of several layers of runtime libraries, implemented in multiple programming languages. In such situation, programmers often choose conservative synchronization patterns leading to suboptimal performance. In this paper, we present context-sensitive dynamic optimizations that elide barriers redundant during the program execution. In our technique, we perform data race detection alongside the program to identify redundant barriers in their calling contexts; after an initial learning, we start eliding all future instances of barriers occurring in the same calling context. We present an automatic on-the-fly optimization and a multi-pass guided optimization. We apply our techniques to NWChem - a 6 million line computational chemistry code written in C/C++/Fortran that uses several runtime libraries such as Global Arrays, ComEx, DMAPP, and MPI. Our technique elides a surprisingly high fraction of barriers (as many as 63%) in production runs. This redundancy elimination translates to application speedups as high as 14% on 2048 cores. Our techniques also provided valuable insight about the application behavior, later used by NWChem developers. Overall, we demonstrate the value of holistic context-sensitive analyses that consider the domain science in conjunction with the associated runtime software stack

    Domain wall motion governed by the spin Hall effect

    Full text link
    Perpendicularly magnetized materials have attracted tremendous interest due to their high anisotropy, which results in extremely narrow, nano-sized domain walls. As a result, the recently studied current-induced domain wall motion (CIDWM) in these materials promises to enable a novel class of data, memory, and logic devices. In this letter, we propose the spin Hall effect as a radically new mechanism for CIDWM. We are able to carefully tune the net spin Hall current in depinning experiments on Pt/Co/Pt nanowires, offering unique control over CIDWM. Furthermore, we determine that the depinning efficiency is intimately related to the internal structure of the domain wall, which we control by small fields along the nanowire. This new manifestation of CIDWM offers a very attractive new degree of freedom for manipulating domain wall motion by charge currents, and sheds light on the existence of contradicting reports on CIDWM in perpendicularly magnetized materials

    Deterministic control of magnetic vortex wall chirality by electric field

    Get PDF
    Concepts for information storage and logical processing based on magnetic domain walls have great potential for implementation in future information and communications technologies. To date, the need to apply power hungry magnetic fields or heat dissipating spin polarized currents to manipulate magnetic domain walls has limited the development of such technologies. The possibility of controlling magnetic domain walls using voltages offers an energy efficient route to overcome these limitations. Here we show that a voltage-induced uniaxial strain induces reversible deterministic switching of the chirality of a magnetic vortex wall. We discuss how this functionality will be applicable to schemes for information storage and logical processing, making a significant step towards the practical implementation of magnetic domain walls in energy efficient computing

    Measurement of χ c1 and χ c2 production with s√ = 7 TeV pp collisions at ATLAS

    Get PDF
    The prompt and non-prompt production cross-sections for the χ c1 and χ c2 charmonium states are measured in pp collisions at s√ = 7 TeV with the ATLAS detector at the LHC using 4.5 fb−1 of integrated luminosity. The χ c states are reconstructed through the radiative decay χ c → J/ψγ (with J/ψ → μ + μ −) where photons are reconstructed from γ → e + e − conversions. The production rate of the χ c2 state relative to the χ c1 state is measured for prompt and non-prompt χ c as a function of J/ψ transverse momentum. The prompt χ c cross-sections are combined with existing measurements of prompt J/ψ production to derive the fraction of prompt J/ψ produced in feed-down from χ c decays. The fractions of χ c1 and χ c2 produced in b-hadron decays are also measured

    Measurements of fiducial and differential cross sections for Higgs boson production in the diphoton decay channel at s√=8 TeV with ATLAS

    Get PDF
    Measurements of fiducial and differential cross sections are presented for Higgs boson production in proton-proton collisions at a centre-of-mass energy of s√=8 TeV. The analysis is performed in the H → γγ decay channel using 20.3 fb−1 of data recorded by the ATLAS experiment at the CERN Large Hadron Collider. The signal is extracted using a fit to the diphoton invariant mass spectrum assuming that the width of the resonance is much smaller than the experimental resolution. The signal yields are corrected for the effects of detector inefficiency and resolution. The pp → H → γγ fiducial cross section is measured to be 43.2 ±9.4(stat.) − 2.9 + 3.2 (syst.) ±1.2(lumi)fb for a Higgs boson of mass 125.4GeV decaying to two isolated photons that have transverse momentum greater than 35% and 25% of the diphoton invariant mass and each with absolute pseudorapidity less than 2.37. Four additional fiducial cross sections and two cross-section limits are presented in phase space regions that test the theoretical modelling of different Higgs boson production mechanisms, or are sensitive to physics beyond the Standard Model. Differential cross sections are also presented, as a function of variables related to the diphoton kinematics and the jet activity produced in the Higgs boson events. The observed spectra are statistically limited but broadly in line with the theoretical expectations
    corecore