155 research outputs found

    Effects of Saponins against Clinical E. coli Strains and Eukaryotic Cell Line

    Get PDF
    Saponins are detergent-like substances showing antibacterial as well as anticancer potential. In this study, the effects of saponins from Quillaja saponaria were analyzed against prokaryotic and eukaryotic cells. Multidrug-resistant clinical E. coli strains were isolated from human urine. As eukaryotic cells, the CHO-K1 cell lines were applied. Antibacterial effect of ampicillin, streptomycin, and ciprofloxacin in the presence of saponins was measured by cultivation methods. Properties of saponins against CHO-K1 cells were measured by the MTT test, hemolysis assay and flow cytometry. Saponin from Quillaja saponaria has a cytotoxic effect at concentrations higher than 25 μg/mL and in the range of 12–50 μg/mL significantly increases the level of early apoptotic cells. Saponin at dose of 12 μg/mL enhances the six E. coli strains growth. We postulate that saponins increase the influx of nutrients from the medium into E. coli cells. Saponins do not have synergetic effects on antibacterial action of tested antibiotics. In contrary, in the presence of saponins and antibiotics, more CFU/mL E. coli cells were observed. This effect was similar to saponins action alone towards E. coli cells. In conclusion, saponins was cytotoxic against CHO-K1 cells, whereas against E. coli cells this effect was not observed

    Effects on DNA and cell viability of treated water contaminated with Cylindrospermopsis raciborskii extract including cylindrospermopsin

    Get PDF
    It is well known that chlorine can oxidize cyanotoxins, thus increasing water potability. Considering that the first steps of conventional treatment do not remove the toxins, the aim of this study was to investigate the toxicity of treated water containing cylindrospermopsin after chlorine addiction. It was analyzed DNA damage and viability of HepG2 cells exposed to the following treatments: cylindrospermopsin (CYN) containing extract of Cylindrospermopsis raciborskii; this same extract added to treated water; non toxic C. raciborskii (all extracts at concentration of 0.1, 0.5 and 1 μg of dry material mL-1), and treated water only. Cells were exposed for 24, 48 and 72 hours. A decrease in cell viability of HepG2 cells was observed after the treatment with toxic C. raciborskii extract (at 0.5 and 1 μg mL-1 for all times of exposure) and the toxic extract with treated water at the two higher concentrations at 48 and 72 hours. Comet assays also revealed DNA damage in HepG2 cells under toxic C. raciborskii extract. Data indicated that chlorine can prevent damage to DNA and to cell viability in most of conditions. In conclusion, chlorine addiction in conventional water treatment has a potential to provide protection or reduce toxic effects of CYN

    Molecular Mechanisms of Microcystin Toxicity in Animal Cells

    Get PDF
    Microcystins (MC) are potent hepatotoxins produced by the cyanobacteria of the genera Planktothrix, Microcystis, Aphanizomenon, Nostoc and Anabaena. These cyclic heptapeptides have strong affinity to serine/threonine protein phosphatases (PPs) thereby acting as an inhibitor of this group of enzymes. Through this interaction a cascade of events responsible for the MC cytotoxic and genotoxic effects in animal cells may take place. Moreover MC induces oxidative stress in animal cells and together with the inhibition of PPs, this pathway is considered to be one of the main mechanisms of MC toxicity. In recent years new insights on the key enzymes involved in the signal-transduction and toxicity have been reported demonstrating the complexity of the interaction of these toxins with animal cells. Key proteins involved in MC up-take, biotransformation and excretion have been identified, demonstrating the ability of aquatic animals to metabolize and excrete the toxin. MC have shown to interact with the mitochondria. The consequences are the dysfunction of the organelle, induction of reactive oxygen species (ROS) and cell apoptosis. MC activity leads to the differential expression/activity of transcriptional factors and protein kinases involved in the pathways of cellular differentiation, proliferation and tumor promotion activity. This activity may result from the direct inhibition of the protein phosphatases PP1 and PP2A. This review aims to summarize the increasing data regarding the molecular mechanisms of MC toxicity in animal systems, reporting for direct MC interacting proteins and key enzymes in the process of toxicity biotransformation/excretion of these cyclic peptides

    7. Biological Effectiveness of 12 C and 20 Ne Ions with Very High LET

    Get PDF
    Knowledge of radiobiological effects of heavy ions at the cellular and molecular level is of fundamental importance in the field of radiation therapy (for example C ions) and space radiation biology (for example Ne ions). One of the issues that require deeper investigations is a determination of RBE values for a wide range of LET, for all relevant doses, for many cell types and various kinds of radiations During recent years, the biological effectiveness of heavy ions has been widely investigated with the aim to identify physical characteristics relevant to biological actions. These investigations are pertinent to the use of heavy ions in radiosurgery and radiotherapy. What has not been investigated so thoroughly is the biological effectiveness of heavy ions at low energies and very high LET values. The LET, which is equal to the stopping power of heavy particles, increases sharply at the end of the particle's path, forming a so-called Bragg peak. The shape of the Bragg peak depends on the particle type. Because overlying beams with different energies and components of primary and secondary particles are used in radiotherapy, the knowledge of RBE values of very high LET radiation need to be well characterized. An experimental set-up designed for such investigations was constructed at the isochronic cyclotron in Heavy Ion Laboratory. A more detailed description of the set-up can be found in Ref. CHO-K1 cells have been used as a suitable biological system for our studies. The cell line is characterized by genetic stability, the ability to form colonies, a relatively rapid growth rate with a cell cycle of 12-14 hours. For exposure to ions the cells were seeded in specially designed Petri dishes, which were filled with medium, sealed by a parafilm cover and placed in a vertical sample holder mounted in an x-y-z table that was connected to a special stepping motor. The irradiated sample moved under the beam according to a planned route. Movement was initiated when the number of counts detected by the 20 o particle detector reached the preset value. When all fields have been exposed the sample holder returned to the start position. Stored information enabled to evaluate the beam stability and intensity. The whole set-up was surveyed by a digital camera. The total time of exposure per dish was between 1-5 min. depending on the dose and beam intensity. The dose rates were changed from 0.05 Gy/min. to 1 Gy/min depending on the dose. Cell survival was estimated according to standard procedure

    Assessment of the genetic risks of a metallic alloy used in medical implants

    Get PDF
    The use of artificial implants provides a palliative or permanent solution for individuals who have lost some bodily function through disease, an accident or natural wear. This functional loss can be compensated for by the use of medical devices produced from special biomaterials. Titanium alloy (Ti-6Al-4V) is a well-established primary metallic biomaterial for orthopedic implants, but the toxicity of the chemical components of this alloy has become an issue of concern. In this work, we used the MTT assay and micronucleus assay to examine the cytotoxicity and genotoxicity, respectively, of an extract obtained from this alloy. The MTT assay indicated that the mitochondrial activity and cell viability of CHO-K1 cells were unaffected by exposure to the extract. However, the micronucleus assay revealed DNA damage and an increase in micronucleus frequency at all of the concentrations tested. These results show that ions released from Ti-6Al-4V alloy can cause DNA and nuclear damage and reinforce the importance of assessing the safety of metallic medical devices constructed from biomaterials

    Genotoxicity of metal oxide nanomaterials: review of recent data and discussion of possible mechanisms

    Get PDF
    Nanotechnology has rapidly entered into human society, revolutionized many areas, including technology, medicine and cosmetics. This progress is due to the many valuable and unique properties that nanomaterials possess. In turn, these properties might become an issue of concern when considering potentially uncontrolled release to the environment. The rapid development of new nanomaterials thus raises questions about their impact on the environment and human health. This review focuses on the potential of nanomaterials to cause genotoxicity and summarizes recent genotoxicity studies on metal oxide/silica nanomaterials. Though the number of genotoxicity studies on metal oxide/silica nanomaterials is still limited, this endpoint has recently received more attention for nanomaterials, and the number of related publications has increased. An analysis of these peer reviewed publications over nearly two decades shows that the test most employed to evaluate the genotoxicity of these nanomaterials is the comet assay, followed by micronucleus, Ames and chromosome aberration tests. Based on the data studied, we concluded that in the majority of the publications analysed in this review, the metal oxide (or silica) nanoparticles of the same core chemical composition did not show different genotoxicity study calls (i.e. positive or negative) in the same test, although some results are inconsistent and need to be confirmed by additional experiments. Where the results are conflicting, it may be due to the following reasons: (1) variation in size of the nanoparticles; (2) variations in size distribution; (3) various purities of nanomaterials; (4) variation in surface areas for nanomaterials with the same average size; (5) differences in coatings; (6) differences in crystal structures of the same types of nanomaterials; (7) differences in size of aggregates in solution/media; (8) differences in assays; (9) different concentrations of nanomaterials in assay tests. Indeed, due to the observed inconsistencies in the recent literature and the lack of adherence to appropriate, standardized test methods, reliable genotoxicity assessment of nanomaterials is still challenging

    Adsorption at cell surface and cellular uptake of silica nanoparticles with different surface chemical functionalizations: impact on cytotoxicity

    Get PDF
    International audienceSilica nanoparticles are particularly interesting for medical applications because of the high inertness and chemical stability of silica material. However, at the nanoscale their innocuousness must be carefully verified before clinical use. The aim of this study was to investigate the in vitro biological toxicity of silica nanoparticles depending on their surface chemical functionalization. To that purpose, three kinds of 50 nm fluorescent silica-based nanoparticles were synthesized: 1) sterically stabilized silica nanoparticles coated with neutral polyethylene glycol (PEG) molecules, 2) positively charged silica nanoparticles coated with amine groups and 3) negatively charged silica nanoparticles coated with carboxylic acid groups. RAW 264.7 murine macrophages were incubated for 20 hours with each kind of nanoparticles. Their cellular uptake and adsorption at the cell membrane were assessed by a fluorimetric assay and cellular responses were evaluated in terms of cytotoxicity, pro-inflammatory factor production and oxidative stress. Results showed that the highly positive charged nanoparticle, were the most adsorbed at cell surface and triggered more cytotoxicity than other nanoparticles types. To conclude, this study clearly demonstrated that silica nanoparticles surface functionalization represents a key parameter in their cellular uptake and biological toxicity

    Evidence for a Novel Marine Harmful Algal Bloom: Cyanotoxin (Microcystin) Transfer from Land to Sea Otters

    Get PDF
    “Super-blooms” of cyanobacteria that produce potent and environmentally persistent biotoxins (microcystins) are an emerging global health issue in freshwater habitats. Monitoring of the marine environment for secondary impacts has been minimal, although microcystin-contaminated freshwater is known to be entering marine ecosystems. Here we confirm deaths of marine mammals from microcystin intoxication and provide evidence implicating land-sea flow with trophic transfer through marine invertebrates as the most likely route of exposure. This hypothesis was evaluated through environmental detection of potential freshwater and marine microcystin sources, sea otter necropsy with biochemical analysis of tissues and evaluation of bioaccumulation of freshwater microcystins by marine invertebrates. Ocean discharge of freshwater microcystins was confirmed for three nutrient-impaired rivers flowing into the Monterey Bay National Marine Sanctuary, and microcystin concentrations up to 2,900 ppm (2.9 million ppb) were detected in a freshwater lake and downstream tributaries to within 1 km of the ocean. Deaths of 21 southern sea otters, a federally listed threatened species, were linked to microcystin intoxication. Finally, farmed and free-living marine clams, mussels and oysters of species that are often consumed by sea otters and humans exhibited significant biomagnification (to 107 times ambient water levels) and slow depuration of freshwater cyanotoxins, suggesting a potentially serious environmental and public health threat that extends from the lowest trophic levels of nutrient-impaired freshwater habitat to apex marine predators. Microcystin-poisoned sea otters were commonly recovered near river mouths and harbors and contaminated marine bivalves were implicated as the most likely source of this potent hepatotoxin for wild otters. This is the first report of deaths of marine mammals due to cyanotoxins and confirms the existence of a novel class of marine “harmful algal bloom” in the Pacific coastal environment; that of hepatotoxic shellfish poisoning (HSP), suggesting that animals and humans are at risk from microcystin poisoning when consuming shellfish harvested at the land-sea interface
    corecore