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Abstract  

Silica nanoparticles are particularly interesting for medical applications because of the high 

inertness and chemical stability of silica material. However, at the nanoscale their innocuousness 

must be carefully verified before clinical use. The aim of this study was to investigate the in vitro 

biological toxicity of silica nanoparticles depending on their surface chemical functionalization. 

To that purpose, three kinds of 50 nm fluorescent silica-based nanoparticles were synthesized: 1) 

sterically stabilized silica nanoparticles coated with neutral polyethylene glycol (PEG) molecules, 

2) positively charged silica nanoparticles coated with amine groups and 3) negatively charged 

silica nanoparticles coated with carboxylic acid groups. RAW 264.7 murine macrophages were 

incubated for 20 hours with each kind of nanoparticles. Their cellular uptake and adsorption at 

the cell membrane were assessed by a fluorimetric assay and cellular responses were evaluated in 

terms of cytotoxicity, pro-inflammatory factor production and oxidative stress. Results showed 

that the highly positive charged nanoparticle, were the most adsorbed at cell surface and triggered 

more cytotoxicity than other nanoparticles types. To conclude, this study clearly demonstrated 

that silica nanoparticles surface functionalization represents a key parameter in their cellular 

uptake and biological toxicity. 

Key words: Silica nanoparticles, macrophages, surface functionalization, uptake, pro-

inflammatory effect, cytotoxicity. 
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INTRODUCTION 

Because amorphous silica is characterized by chemical stability and inertness independently of 

pH and temperature, it is used for biomedical applications like dental fillings, gel-catheters, 

biosensors and bioengineering of bone (Auffinger et al. 2013; Colilla et al. 2008; Vallet-Regi and 

Balas 2008). Recently amorphous silica has encompassed the emerging field of nanotechnology 

(as anti-caking agents in food, as nano-abrasive in cosmetics, as reinforcing fillers in 

rubber…)(Napierska et al. 2010). It is also of particular interest for nanomedicine because of the 

advantages silane chemistry offers (Slowing et al. 2008; Mignot et al. 2013). Indeed, the surface 

of silica nanoparticles can be modified with chemical functional groups like addition of specific 

antibodies or fluorescent labels for specific drug delivery (targeting of cancer cells) or specific 

diagnosis (tumor labeling)(Chandolu and Dass 2013). As an example dye-doped fluorescent 

(Cyanine-5) silica nanoparticles (8 nm in diameter), known as “Cornell dots”, have been 

approved in 2011 by the US Food and Drug Administration (FDA) for human stage I molecular 

imaging of cancer (Benezra et al. 2011). Those confirm the importance of future clinical 

potentials of silica-based nanoparticles as effective and specific medical tools. However, those 

objects exhibiting novel and significantly improved physical and chemical properties due to the 

nanoscale, consequently exhibit a novel biological activity in human body (Lidén 2011; 

Riehemann et al. 2009). This is why current in vivo and in vitro researches are ongoing for a 

better knowledge of nanoparticles fate and to provide safer uses (Seaton and Donaldson 2012). 

Nanoparticles whose size is close to that of cellular components, may interact specifically with 

cells (Huang et al. 2005).
 
They can adhere to the cell membrane or be entirely engulfed by 

different pathways, especially by macrophage cells due to their phagocytic capacity (Leclerc et 

al. 2012).
 
In order to better understand these interactions, fluorescent labeled nanoparticles may 
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be used and tracked through the cells. Literature highlights that the uptake of nanoparticles 

(pathway and rate) strongly depends on cell type (Sohaebuddin et al. 2010) and on the 

nanoparticle physico-chemical features (Musyanovych et al. 2011; Chung et al. 2007; Hu et al. 

2007). It is well admitted that these latter may play a role in nanoparticle cytotoxicity (Greish et 

al. 2011; Yu et al. 2011; Chung et al. 2007), and several parameters to take into consideration to 

engineer safer nanoparticles were defined by ISO TS/13014 (2012a) (“safer by design” 

approach): size, shape, surface functionalization, state of agglomeration and agregation, 

composition, solubility, dispersibility, specific surface area, density of surface groups and surface 

chemistry (Frohlich 2012; Duffin et al. 2007; Albanese et al. 2012). This study will focus on 

nanoparticle surface functionalization. 

Greish et al. already demonstrated that surface charge of silica nanoparticles (coated with amine 

or hydroxyl groups) significantly influenced their biodistribution in mice. But toxicity evaluated 

by animal weight loss did not seem to be influenced by the surface charge of the nanoparticles 

(Greish et al. 2011). Landsiedel et al. showed that during short-term inhalation of silica particles 

(coated with amine or PEG) by rats, surface modifications changed the toxicity of the core 

material in terms of cytokine production in broncho-alveolar lavage fluid (BALF) (Landsiedel et 

al. 2014). In a complementary way, in vitro assays are informative on the direct interactions 

between immune cells and nanoparticles. For example, Nabeshi et al., incubated unmodified or 

modified (with amine or hydroxyl groups) silica nanoparticles with murine macrophages and 

revealed that the cell proliferation decreased when cells were incubated with unmodified silica 

nanoparticles; they concluded that the surface functionalization by both amino and hydroxyl 

groups decreased their toxicity (Nabeshi et al. 2011). In the same way, Lankoff et al., showed 

that, in contrast to unmodified silica nanoparticle, positively charged nanoparticles with 

aminopropyl/vinyl coating expressed no cytotoxicity on lymphocytes (cell viability, 
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apoptosis/necrosis…) (Lankoff et al. 2013). Thus, nanoparticle coating may allow safer 

nanomedicine and number of studies point out the importance of surface functionalization of 

nanoparticles on their interaction with cells and biological responses (Dausend et al. 2008; El 

Badawy et al. 2011; Mura et al. 2011).  

However, one of the particularities of nanoparticles to consider is that they are changing objects. 

Their “biological identity” evolves in biological media over time (Faunce et al. 2008; Dell’Orco 

et al. 2010). Proteins are adsorbed and desorbed from the nanoparticle surface. This so called 

“corona” becomes the first element of the nanomaterial in contact with the cells. It is difficult to 

determine precisely, therefore, it is important to characterize again nanoparticles in culture media 

in terms of surface charge and size (Walkey and Chan 2012). 

The aim of the present study was to investigate the relationship between surface functionalization 

of silica nanoparticles and their cellular uptake and toxicity. For that purpose, three kinds of 50 

nm fluorescent (fluorescein isothiocyanate - FITC) silica-based nanoparticles were synthetized at 

the laboratory scale: 1) sterically stabilized nanoparticles coated with neutral polyethylene glycol 

(PEG) molecules, 2) positively charged nanoparticles coated with amine groups and 3) negatively 

charged nanoparticles coated with carboxylic acid groups. Nanoparticles were incubated with 

murine macrophages as these cells represent the first line of defense against inhaled exogenous 

elements and are an in vitro reference model in nanotoxicology. Cellular uptake and adsorption at 

cell membrane was then assessed by fluorimetry and the cellular response was evaluated in terms 

of cytotoxicity: loss of cell membrane integrity (determined by the Lactate DeHydrogenase 

(LDH) assay), pro-inflammatory effect (TNF-α production) and oxidative stress (Reactive 

Oxygen Species (ROS) generation). 

 

MATERIALS AND METHODS 



6 
 

Nanoparticles synthesis 

Silica-based nanoparticles, called NP, were prepared according to a previous method developed 

by Martini et al. (Martini et al. 2009). The fluorescence of FITC was increased by the gold core 

by Förster resonance energy homo-transfer (homo-FRET) non radiative.  

Five kinds of nanoparticles were produced and referred according to charges profile of their 

surface chemical groups. Sterically stabilized were referred to as NP(0), positively charge 

stabilized nanoparticles were coated with a variable amount of amine groups: NP(++) and NP(+), 

negatively charge stabilized nanoparticles with a variable amount of carboxylic acid groups: NP(-

-) and NP(-). 

The water/oil (W/O) microemulsion procedure was considered the best way to produce 

homogeneous and reproducible core-shell samples for systematic biological assays. Indeed, each 

reverse micelle (aqueous droplets sized ∼10 nm) acts as template for the controlled-growth of 

core-shell structures. Quaternary W/O microemulsions were prepared by mixing Triton X-100 

(surfactant), n-hexanol (co-surfactant) and cyclohexane (oil), followed by sequential additions of 

specific polar-like precursors. An inclusion of gold clusters at the center of each particle was 

obtained by the reduction of gold salt in presence of ligands and NaBH4. The formation of 

polysiloxane matrix arised from the base-catalyzed hydrolysis and condensation of two silica 

precursors: 92 %w TEOS (tetraethoxysilane) and 8 %w dye conjugated-APTES ((3-

aminopropyl)triethoxysilane). APTES conjugates ensured a covalent bonding of dyes 

(Fluorescein molecules FITC) and their random distribution within nanoparticles. The colloidal 

stabilization was then achieved by the final addition of specific silane precursors that leads the 

specific surface charge for further biological assays (Table 1). In order to obtain an average 

number of negative charge per surface unit equal to 2/nm² (NP(--)), a controlled amount of 3-

(Triethoxysilyl)propylsuccinic anhydride (Si-COOH) has been added, whereas for the positive 
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charged nanoparticles (NP(++)), N-(2-Aminoethyl)-3-aminopropylmethyldimethoxysilane was 

chosen as precursor. Neutral particles, NP(0), exhibit 1/nm² N-(3-

Triethoxysilylpropyl)gluconamide molecules as well as 1/nm² mPEG-silane 2kDa at their 

surface, giving an additional steric contribution to the colloidal stability. Thereafter, all solvents 

were eliminated by the addition of acetone followed by several cycles of vortexing and 

centrifuging. Unreacted dyes and precursors were removed by ultrafiltration using 300 kDa PES 

membranes (with a purification rate higher than 108). Particles were dispersed in aqueous 

solution (2g/L) and stored at 4˚C. 

Physico-chemical characterization of nanoparticles 

The detailed structural and morphological characterization of the samples was carried out by 

Scanning Electron Microscopy (SEM) using an ESEM XL30-FEI microscope equipped with a 

thermal field emission gun (FEG) and Transmission Electron Microscopy (TEM) using a Philips 

CM200 microscope. The samples were prepared by depositing a drop of diluted colloidal solution 

onto a carbon grid (200 meshes) and allowing the solvent to evaporate at room temperature. The 

direct measurement of hydrodynamic size as well as zeta potential was performed by Dynamic 

Light Scattering (Zetasizer NanoZS, Malvern). The monoexponential correlation function 

obtained allowed determining the hydrodynamic size, and zeta potential values for nanoparticles 

dispersed at dose of 100µg/ml in MilliQ water or cell culture medium Dulbecco’s modified 

Eagle’s medium (DMEM, Invitrogen, Cergy Pontoise, France) supplemented with 10% of fetal 

calf serum (Invitrogen) and 1% penicillin–streptomycin (penicillin 10,000 units/ml, streptomycin 

10 mg/ml; Sigma-Aldrich, Saint-Quentin Fallavier, France) (DMEMc). Measurements were 

performed in triplicate at room temperature of 25°C. Refractive index (RI) and viscosity values 

were applied for water and cell culture medium (1.3  mPa·s viscosity for culture medium and 0.8 

mPa·s viscosity for water).  
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Cell culture 

RAW 264.7 cell line derived from mice peritoneal macrophages transformed by the Abelson 

murine leukemia virus and was provided by ATCC Cell Biology Collection (Promochem, LGC, 

Molsheim, France). Cells were cultured in DMEMc at 37°C and under a 5% carbon dioxide 

humidified atmosphere. 

Cells/nanoparticles contacts 

For cell morphology analysis, RAW 264.7 cells were seeded in a 12-well plate (1 million cells 

per well) and were allowed to attach for 4h. Cells were incubated with 50 or 300 µg/ml of 

nanoparticles suspension for 20h. Cells were harvested and 100µl of cell suspension were used to 

prepare cytospin after cytocentrifugation (cytospin IV Shandon, Thermo electric, France). Cells 

were stained by May-Grünwald Giemsa method and observed under camera microscope (NIS-

elements, Nikon, France). A semi-quantitative analysis was conducted after the observation of 

100 cells in order to determine the amount of activated macrophages. 

Because in vitro experimental researches are not normalized in term of nanoparticles dose 

(Bhattacharjee et al. 2010; Yu et al. 2011; DeLoid et al. 2014) and a significant cell response is 

needed to compare the effects of the differently designed nanoparticles, the dose range was 

chosen after a preliminary study on a logarithmic scale as 5, 50 and 300 µg/ml. 

For cellular uptake and cytotoxicity assays, macrophages were seeded in 96-well plates (100 000 

cells in 200µl of medium per well) and were allowed to adhere for 4 h. Nanoparticles were 

diluted in cell culture medium to reach the following final concentrations: 5, 50, and 300 µg 

NP/ml. Nanoparticles were added to cells and incubation lasted 20h. 

Cellular uptake assessment 
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Nanoparticle uptake was quantified using a fluorometer (Fluoroskan Ascent, Thermolabsystems, 

France). FITC labeled nanoparticles have an excitation peak at 485 nm and an emission peak at 

538 nm (green fluorescence) with a large spectrum. Total nanoparticles fluorescence was 

measured at each dose in order to obtain a calibration curve. Then the fluorescence of 

nanoparticles in supernatant, adsorbed to cell membrane and internalized by cells were 

discriminated by a “trypan blue quenching” (TB) method previously developed by Leclerc et al. 

from flow cytometry techniques (Van Amersfoort and Van Strijp 1994; Nuutila and Lilius 2005; 

Leclerc et al. 2010). In addition to its principal function as an exclusion dye of dead cells, TB is 

known for its ability to “turn off” the green fluorescence emitted by FITC labeled particles 

outside the cells (Leclerc et al. 2012). This process allowed us to distinguish internalized 

nanoparticles from those just adhering to the plasma membrane (Gratton et al. 2008). After 20 

hours of contact between nanoparticles and macrophages, the fluorescence of nanoparticles 

remained in cell supernatant was measured as well as the fluorescence of nanoparticles adsorbed 

at the cell surface and the fluorescence of the nanoparticles uptaken by cells. For each condition, 

nanoparticles fluorescence was measured independently. Control wells without nanoparticles 

were used to assess the autofluorescence of cells in culture medium.  

Cellular uptake of nanoparticles was also observed using transmission electron microscopy 

(TEM). TEM images were obtained using a JEOL 2010F FEG microscope at a 200 kV 

accelerating voltage. Samples were prepared by dropping sample suspension on a carbon-coated 

holey film supported on a 3 mm mesh copper grid. 

Cytotoxicity assays 

Membrane integrity 

The release in the cell culture supernatant of the cytoplasmic lactate dehydrogenase (LDH) from 

cells with damaged membranes was assessed using the CytoTox-96™ Homogeneous Membrane 
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Integrity Assay (Promega, Charbonnières les bains, France) according to the manufacturer’s 

instructions. The optical density of the samples was determined using a microplate reader 

(Multiskan RC; Thermolabsystems, Helsinki, Finland) set to 450 nm. The activity of the released 

LDH was reported to that of total cellular LDH (measured after control cells lysis) and was 

expressed as a percent of the control lysed cells. Each experiment was repeated independently 

three times for each sample. 

As nanoparticles could potentially interfere with the different kit reagents, it was verified that 

there was no artifact in the measure. To that purpose, nanoparticles were incubated with cells for 

20h and the LDH assay was performed. Then the samples were lyzed and the LDH assay was 

carried out again. No significant difference was detected between lysed cells incubated with or 

without nanoparticles, showing the reliability of the assay.  

Pro-inflammatory effect 

After incubation with nanoparticles, the production of TNF-α was assessed in the supernatant 

using a commercial ELISA Kit (Quantikine® Mouse TNF-α Immunoassay; R&D Systems, Lille, 

France) according to the manufacturer’s instructions. The optical density of each sample was 

determined using a microplate reader (Multiskan RC; Thermolabsystems, Helsinki, Finland) set 

to 450 nm. A standard curve was established, and results were expressed in picograms per 

milliliter of TNF-α. Each experiment was repeated independently three times for each sample and 

included controls: cells alone (negative control) and DQ12 quartz (toxicological positive control) 

(Bruch et al. 2004; Fubini et al., 2004). 

In order to verify the absence of any artifact caused by the presence of the nanoparticles, the 

concentration of a standard solution of TNF-α was assessed with the ELISA test (in cell free 

conditions). Particles were then added to this solution and the TNF- concentration was assessed 



11 
 

again. No significant difference in TNF- concentration was observed between the sample with 

and the sample without nanoparticles indicating that no artifacts occurred in the assessment due 

to the nanoparticles. 

Oxidative stress 

A large array of reactive oxygen species (ROS) activity can be assessed with the OxiSelect™ 

ROS Assay Kit (Euromedex, Mundolsheim, France). The assay uses the conversion of a non-

fluorescent substrate, 2.7′-dichlorodihydrofluorescein diacetate that can easily diffuse through 

cell membranes and be converted into a fluorogenic molecule 2′.7′-dichlorodihydrofluorescein 

(DCF) in presence of ROS and which fluorescence is proportional to total ROS level. DCF 

production was detected using a Fluoroskan Ascent fluorometer (Thermolabsystems) using 

excitation and emission wavelengths of 480 and 530 nm respectively, and the generation of ROS 

was expressed as nanomolar. Each experiment was repeated independently three times for each 

sample. 

In order to verify that no artifact was induced by the nanoparticles, a standard solution of 

DCFHDA was assessed either in presence or in absence of nanoparticles. No significant 

difference was detected between the samples indicating that no artifacts were involved. 

Statistical analysis 

Analysis and graphics were performed on Prism 5.0 software (GraphPad, San Diego, CA). 

Significance was established with two-way-ANOVA test (compared to negative control: cells 

alone) or one-way-ANOVA (compared to each other) and data considered significant with p < 

0.05 are marked with an asterisk (*) sign. Each data point represents the mean of three 

independent experiments (n = 3) and is presented with the arithmetic standard error means (± 

SEM). 
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RESULTS 

Nanoparticles characterization 

In Fig.1, the spherical shape was clearly observed by SEM. The dark gold core and the grey silica 

shell can easily be observed using TEM. Geometric diameters were measured from electron 

microscopy. Hydrodynamic diameters and zeta potential were measured using DLS. These data 

are reported in Table 1. 

In water and for each type of nanoparticles, the hydrodynamic diameter was correlated with the 

geometric diameter, whereas in DMEMc it was significantly increased. Similarly, zeta-potentials 

of the five kinds of nanoparticles were distinct in water but in DMEMc all zeta-potentials became 

negative, with the most important decrease of surface charges observed for the nanoparticles 

exhibiting the highest initial charges: NP(--) and NP(++). 

Cellular uptake 

Cellular uptake was then quantified using a quantitative assessment by fluorimetry as reported in 

Fig.2. The amounts of nanoparticles in supernatant, adsorbed at cell membrane or uptaken were 

determined. It clearly appeared that nanoparticles mainly remained in the supernatant whatever 

the surface functionalization. Moreover uptake and adsorption were found to be dose-dependent 

irrespective of the nanoparticle type. 

Therefore, at the same dose, the amount of nanoparticles uptaken and adsorbed at the cell surface 

was surface charge-dependent: the uptake was more important for the nanoparticles exhibiting 

negative charges: NP(--),NP(-) or neutral charges NP(0). Almost no uptake was detected for 

positively charged NP(+) and NP(++). In contrast, a higher adsorption at cell membrane was 

observed for the positively charged nanoparticles NP(++) and then NP(+). 
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Cellular uptake was also investigated by TEM. Similar patterns of cellular uptake were observed 

for the different types of nanoparticles. An illustration is given in Fig.3 for control cells and cells 

incubated with 300 µg/ml of NP(0) or NP(++). The observations were in good accordance with 

the quantitative uptake presented in Fig.2 except for NP(++). Indeed, no uptake of NP(++) was 

detected by fluorescence even at the high dose of 300µg/ml while uptake of NP(++) by 

microscopy was actually observed. 

Cytotoxicity 

Cell morphology 

Fig.4 shows the global morphology of cells after a 20h contact with NP(0) and the nanoparticles 

exhibiting the highest charges: NP(--) and NP(++). Two concentrations of nanoparticles were 

tested: 50 and 300 µg/ml. At low dose, large vacuoles clearly appeared in cytoplasm of cells in 

contact with NP(++) suggesting the macrophages activation (Luzio et al. 2003). At high dose, the 

amount of vacuoles was increased in cells incubated with each type of nanoparticles. Similarly, 

cells with a lysed membrane and condensed nucleus, called “ghost” cells, were clearly identified 

demonstrating advanced cytotoxicity, especially with NP(++). 

Table 2 is a semi-quantification of the cell morphology evolution. It took a high dose of NP(--) 

and NP(0) to activate macrophages without inducing a significant mortality (5 and 16% of ghost 

cells respectively). On the contrary, at low dose NP(++) activated much more macrophages 

(79%) and provided a high level of mortality at high dose (77% of ghost cells) suggesting that 

NP(++) were the most cytotoxic nanoparticles. 

Membrane integrity 

Quantitative results for membrane integrity assay are shown in Fig.5. The LDH release triggered 

by NP(-), NP(0) and NP(+) was not significantly different from that of control cells (incubated 

without nanoparticles). On the opposite, NP(++) were found to be cytotoxic at doses as low as 5 
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µg/ml and NP(--) became significantly cytotoxic at the highest concentration (300 µg/ml). A 

dose-dependent effect appeared for those two types of nanoparticles. 

TNF-α pro-inflammatory production 

Pro-inflammatory effects of the nanoparticles were determined by the TNF-α assay. Results are 

shown in Fig.6. Basal level of TNF-α production was increased by the presence of nanoparticles 

for the five types of nanoparticles only at high doses. The inflammatory effect was dose-

dependent and nanoparticles biological effect exceeded the positive control DQ12 signal at high 

doses of 300 µg/ml. NP(++) induced the highest pro-inflammatory signal from doses of 50 

µg/ml. 

Oxidative stress 

No significant oxidative stress was detected when cells were incubated with the different types of 

nanoparticles. Relative quantification of ROS probe DCF in cells in contact with each kind of 

nanoparticles was around 45 nM (data not shown) and was not statistically different from 48 nM 

detected for control cells. 

 

DISCUSSION 

This study aimed at understanding the relationship between the surface chemical 

functionalization of 50 nm silica-based nanoparticles, their toxicity and ability to be uptaken by 

cells. A series of fluorescent nanoparticles constituted by a polysiloxane-coated gold cluster that 

encapsulates FITC were prepared by a microemulsion method. SEM analysis confirmed the 

presence of well-organized film of nanoparticles with spherical shape (Fig.1(A)). TEM images 

revealed gold/polysiloxane nanoparticles with an average size of 54 nm and a standard deviation 

value less than 2 nm (Fig.1(B)). A thorough physico-chemical characterization of the 
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nanoparticles was carried out in water and in cell culture medium DMEMc by dynamic light 

scattering instrument. It was observed that the hydrodynamic diameter and the zeta potential of 

the nanoparticles exhibiting the highest charges (i.e. NP(--) and NP(++)) were the most evolving 

in DMEMc. Both diameters became superior to 100 nm and zeta potentials decreased to about -

95mV due to the buffered culture medium. Those changes between water and culture medium are 

very likely due to the adsorption of proteins from the culture medium at the nanoparticles surface 

forming the so-called “corona” (Cedervall et al. 2007). Therefore, chemical groups initially 

grafted onto the nanoparticle surface are hidden by proteins and nanoparticle surface charge is 

rather related to the nature of the adsorbed proteins. Thus, initially positively charged and 

initially negatively charged nanoparticles may exhibit a similar global negative zeta potential in 

cell culture medium. Moreover it does not imply an equivalent protein corona (Lundqvist et al. 

2008; Tenzer et al. 2013). This difference in protein corona composition may consequently 

mediate different interactions with cells. And indeed, we observed that initially positively 

charged nanoparticle were less uptaken than initially negatively charged nanoparticles (Fig. 2). 

The initial nanoparticle charge can thus indirectly influence the interactions with cells through the 

chemical nature of the corona. Qiu et al. showed as well that proteins quickly adsorbed onto gold 

nanorods of different surfaces and turned the nanoparticles surface charges negatively. When 

incubated with a human breast adenocarcinoma cell line (MCF-7) it resulted that surface charge 

of nanoparticles may not directly affect the cellular uptake, but the amount of serum proteins 

adsorbed on the nanoparticles was positively correlated with the capacity of nanoparticles to enter 

into cells (Qiu et al. 2010). 

Hydrodynamic diameter and zeta potential of NP(-) and NP(+) did not evolve much certainly due 

to a poor density of charged surface groups. Similarly, NP(0) coated with PEG did not 
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significantly vary in the transition from water to DMEMc. This was consistent with literature data 

as it is admitted that « PEGylation », i.e. the grafting of linear chains of PEG at nanomaterial 

surface, allows reducing protein adsorption by blocking protein-binding sites and creating a steric 

hindrance (Walkey et al. 2012).  

Nanoparticles were incubated with macrophages and their uptake was assessed before the 

evaluation of their in vitro toxicity. Concerning the uptake of NP(++), results from TEM and 

fluorimetry analyses seemed contradictory at first sight. However it should be kept in mind that 

these two techniques were performed with a different aim and can hardly be directly compared. 

Indeed, TEM images were used to verify the presence (or not) of nanoparticles in cells (Gratton 

et al. 2008). They also allowed obtaining information on the subcellular localization of 

nanoparticles within cells. Indeed, TEM visualization confirmed the cellular uptake of the five 

kinds of studied nanoparticles with an accurate localization in vacuoles (Fig.3). However, this 

method, takes into account only survival cells and was not representative to all cells initially in 

contact with nanoparticles. Besides, this technique is essentially qualitative and does not permit 

to rigorously quantify the number of nanoparticles uptaken. Moreover, the preparation of the 

samples and the technique itself are too heavy to perform enough analyses to get statistically 

relevant results. On the opposite, fluorimetry was used to obtain quantitative data and to compare 

the capacity of different types of nanoparticles to be uptaken by cells. Furthermore, this method, 

combined with the use of the Trypan Blue dye, allows to distinguish FITC fluorescent 

nanoparticles uptaken from nanoparticles adsorbed (Nuutila and Lilius 2005) at the cell 

membrane by quenching the fluorescence of nanoparticles outside cells. Those data were 

expressed as means of detected fluorescence per cell related to the total amount of previously 

seeded cells in each well. It should be noted that FITC fluorescence might be altered in 
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endocytosis vesicles because of their high acidity (Munkholm et al. 1990; Ohkuma and Poole 

1978). Thus, the number of nanoparticles per cell could be slightly underestimated but it allowed 

to compare the ability of each type of nanoparticles to be uptaken by cells.  

Interestingly, NP(++) was the kind of nanoparticles the most adsorbed at the cell surface,. Many 

authors already reported that high adsorption of positive nanoparticles may be related to 

electrostatic interactions with the negatively charged cell surface (Ge et al. 2009; El Badawy et 

al. 2011). But, as previously mentioned, initially positively charged nanoparticles exhibited a 

negative zeta potential in cell culture medium due to the formation of a protein corona. This 

suggests that the assumption of a high adhesion of positive nanoparticles to cell membrane 

through electrostatic interactions should be revisited in favor of an indirect effect due to the 

protein corona. These interactions need further investigations to be better understood.  

Similarly, it is commonly accepted in the literature that positively charged nanoparticles are more 

uptaken than other kinds of nanoparticles (Chung et al. 2007; Yue et al. 2011). For instance 

Guarnieri et al. reported that (25 to 115 nm) particles surface functionalized with positively 

charged groups were more uptaken than those functionalized with negatively charged groups 

(Guarnieri et al. 2014). Likewise, Rancan et al. reported that the functionalization of the particle 

surface with positively charged groups enhanced the in vitro cellular uptake (Rancan et al. 2012). 

These data appear in contradiction with our results, showing that NP(++) and NP(+) were less 

uptaken than NP(0) or NP(--) and NP(-). This could be due to a difference of functionalization in 

group types and density as suggested by Graf et al. Indeed, they discussed that one type of (55 

nm) positively charged particle (AHAPS) was easily internalized by macrophages, while another 

type of positively charged particle (short alkyl chain aminosilanes) was uptaken by cells in a 

lower amount (Graf et al. 2012).  
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These studies also established a link between a low uptake and particles aggregation. In 

particular, Guarnieri et al. demonstrated that the fact that positive nanoparticles were more 

internalized than negative nanoparticles was contrasted by the tendency of particles to form 

agglomerates leading to lower internalization efficiency. This could explain our observations. In 

fact, among the DLS data, size measurements showed several peaks corresponding to different 

hydrodynamic diameters were represented, which is a characteristic of a polydisperse suspension. 

For example, for the sample of NP(0) in DMEMc, peaks of 10 nm, 88 nm and 450 nm in 

diameter were observed. For each sample, the assumption was made that the peak with the closest 

value to the nanoparticle geometric diameter (measured on TEM images) corresponded to the 

nanoparticle population and indicated its hydrodynamic diameter. For example, NP(0) 

hydrodynamic diameter was determined as being 88 nm (the 10 nm population was certainly 

debris and the 450 nm population was certainly aggregates of proteins and nanoparticles). 

Moreover, the DLS data indicated for each peak a distribution rate, which was assumed to be 

equivalent to the percentage of monodispersed nanoparticles. This leaded to estimate that 5% of 

NP(++) were monodispersed against 40 and 30 % for NP(0) and NP(--) respectively. Therefore, 

NP(++) were less internalized than NP(0) and NP(--) possibly in relation to their agglomeration 

state.  

Discrepancies between our results and that of Guanieri et al. can also be explained by the fact 

that experiments were carried out using different cell models. This hypothesis is supported by 

Chung et al. study (Chung et al. 2007) where the surface charge of mesoporous silica 

nanoparticles varied by the degree of surface modification with N-trimethoxysilylpropyl-N,N,N-

trimethylammonium chloride and their uptake was detected by flow cytometry in different cell 

lines (3T3-L1 and human mesenchymal stem cells). Results showed that particle uptake by 
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human mesenchymal stem cells can be regulated by a threshold of positive surface charge but 

also implied that the modulation of surface charge on nanoparticles uptake was specific to cell 

type. 

Nevertheless, those quantitative results may be differently interpreted considering morphological 

May-Grünwald Giemsa microscopic images (Fig.4). Taken together, fluorescent uptake 

quantification and morphology images of cells in contact with NP(++) showed that NP(++) 

exhibited the lowest uptake and the highest cytotoxicity. Considering those results, two 

assumptions could be made: (1) A simple contact between nanoparticles and the cell membrane is 

sufficient to induce the cytotoxicity. In other words, NP(++) do not need to be uptaken to be 

cytotoxic. (2) The low amount of internalized NP(++) might not necessarily be related to a lower 

uptake but could be due to an important release of the nanoparticles outside of the cell in relation 

to their high cytotoxicity, precluding the detection of previously engulfed nanoparticles and a 

very important ghost morphology. Consistent with this hypothesis is the fact that NP(++) induced 

a significant loss of membrane integrity (LDH release) from the lowest doses (5 and 50 µg/ml) 

and a significant pro-inflammatory effect from low dose (50 µg/ml) while no cytotoxicity is 

detected for other nanoparticles types. Moreover, this second assumption could explain 

contradictory results obtained from TEM and fluorimetry analyses for NP(++). As a mater of 

fact, TEM images mainly showed intracellular nanoparticles in observed cells while fluorimetry 

quantification method showed  very low content of internalized NP(++). If we consider that 

NP(++) induce a high level of loss of membrane integrity that lead to a high release of NP(++), 

we deduced that only the few surviving cells and cells containing  NP(++) were not 

representative of the high amount of cells put in contact with nanoparticles. Besides, the relative 

lower detection limit of the fluorimetry method does not allowed to detect this very low uptake. 
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Results from cytotoxicity assessments also showed that nanoparticles exhibiting a poorly 

negative or a poorly positive surface charge may exhibit the same cytotoxic profile than neutral 

nanoparticles. Indeed, NP(0), NP(-) and NP(+) did not show a significant loss of membrane 

integrity but provided pro-inflammatory effect at high dose (300 µg/ml). No significant oxidative 

stress was detected which is consistent with a similar study carried out by Panas et al. where the 

same RAW264.7 macrophages were incubated with engineered silica nanoparticles of 25 nm 

diameter (Panas et al. 2013).  

 

Conclusion  

The present study clearly demonstrated that surface chemical functionalization plays a key role in 

the interactions between silica-based nanoparticles and cells with a significant impact on their 

uptake and biological in vitro toxicity. The highly positively charged nanoparticles were the most 

adsorbed at cell surface but were negligibly uptaken and triggered more cytotoxicity than other 

nanoparticles types. The highly negatively charged nanoparticle, were the most uptaken by cells 

and triggered cytotoxicity only at high dose. Neutrally charged nanoparticles and poorly, 

positively or negatively, charged nanoparticles expressed the same cytotoxic profile with a pro-

inflammatory effect at high dose. Importantly, our findings suggest that nanoparticles adsorption 

at the cell membrane seems to play a more important role in cytotoxicity than nanoparticles 

uptake. Further investigations are needed to better understand how nanoparticle surface charge 

may impact biological responses in order to provide a “safer by design” approach for the 

engineering of new nano-objects. 
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50 nm 20 nm 

Fig1 

Images of sterically stabilized silica nanoparticles 

NP(0) by (A) Scanning electron microscopy and 

(B) Transmission electron microscopy. 
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Fig2 

Fluorescent (FITC) silica nanoparticles with different surface stabilizations: NP(0), NP(+), 

NP(++), NP(-) and NP(--) were incubated for 20h with RAW264.7 macrophages and the 

distribution of NP was assessed by fluorimetry and Trypan Blue quenching. Results are 

presented as number of nanoparticles per cell. In order to facilitate the comprehension, the table 

gives the corresponding percentage referring to the total initial dose of NP in contact with cells. 

(n=3). 
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Fig3 

Cellular uptake of NP(0) and NP(++) by RAW 264.7 macrophages after a 20h incubation (300µgNP/ml) 

using transmission electron microscopy. (A) Control cell without nanoparticle. (B) Similar to the area within 

square of (A). (C) Cell after incubation with nanoparticles NP(0). (D) Similar to the area within square of 

(C): (1) nanoparticles are in a vacuole and (2) nanoparticles are adhering to the cell membrane in a 

potential figure of phagocytosis pseudopodia. (E) Cell after incubation with nanoparticles NP(++). (F) 

Similar to the area within square of (E): (3) nanoparticles are in a vacuole and (4) nanoparticles are 

adhering to the cell in a potential membrane figure of endocytosis. 
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Fig 4 

Morphology of macrophages observed after May 

Grünwald Giemsa staining (x600). (A) Control cells 

are macrophages incubated alone. (B), (C) and (D) 

images are macrophages incubated 20h in 

presence of nanoparticles NP(--), NP(0) and 

NP(++) respectively. Two different doses were 

used, 50 and 300µg/ml, corresponding to images 

(.1) and (.2) respectively. “G.” mark ghost cells and 

“V.” mark vacuoles. 
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Fig5  

Cytotoxicity of five different nanoparticles investigated using the LDH assay 

in RAW 264.7 macrophages. Data considered significant with p < 0.05 are 

marked with an asterisk sign (*). (n=3) 
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Fig6 

Pro-inflammatory effect of five different nanoparticles investigated using the 

TNF-α assay in RAW 264.7 macrophages. Data considered significant with p 

< 0.05 are marked with an asterisk sign (*). (n=3) 
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Table 1 - Characteristics of the nanoparticles used in the present study. 

 
Function-

alization 

Zeta 

potential 

in water 

(pH7-8) 

Zeta 

potential  

in DMEMc 

(pH7-8) 

Geometric 

diameter 

(SEM) 

Hydro-dynamic 

diameter (DLS) 

in water 

Hydro-

dynamic 

diameter 

(DLS) 

in DMEMc 

 

NP (--) 
Si- COOH -30 mV  -96 mV 52±2 nm 

82±1 nm 

 

104±4 nm 

 

NP(-) Si- COOH -25 mV -13 mV 50±5 nm 62±5nm 85±3 nm 

NP (0) 
Si-  

PEG200 
0 mV -11 mV 52±3 nm 76±7 nm  88±5 nm  

NP(+) 
Si-  

NH2 
5 mV -20 mV 62±2 nm 75±5 nm 90±5 nm 

NP (++) 
Si-  

NH2 
12 mV -94 mV 66±7 nm 89±2 nm   111±10 nm  
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Table 2 - Evolution of cell morphology after incubation with NP(--), NP(0) and NP(++) at 50 or 300µg/ml: 

macrophages initially have a normal morphology with homogeneous cytoplasm. Activated macrophages 

cytoplasm contains vacuoles, and then close to death, cell without defined cytoplasm but a condensed 

nucleus and a lysed membrane are called “ghost”. 100% of control cells exhibit a normal morphology. 

Cell morphology 

evolution depending 

on type and dose of 

nanoparticles 

NP(--) NP(0) NP(++) 

50 µg/ml 

86% normal 

9% activated 

5% ghost 

96% normal 

1% activated 

3% ghost 

17% normal 

79% activated 

4% ghost 

300 µg/ml 

63% normal 

32% activated 

5% ghost 

12% normal 

58% activated 

16% ghost 

4% normal 

19% activated 

77% ghost 
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