8 research outputs found

    Charged-particle distributions in pp interactions at √s = 8 TeV measured with the ATLAS detector

    Get PDF
    This paper presents measurements of distributions of charged particles which are produced in proton– proton collisions at a centre-of-mass energy of √s = 8 TeV and recorded by the ATLAS detector at the LHC. A special dataset recorded in 2012 with a small number of interactions per beam crossing (below 0.004) and corresponding to an integrated luminosity of 160 µb−1 was used. A minimumbias trigger was utilised to select a data sample of more than 9 million collision events. The multiplicity, pseudorapidity, and transverse momentum distributions of charged particles are shown in different regions of kinematics and chargedparticle multiplicity, including measurements of final states at high multiplicity. The results are corrected for detector effects and are compared to the predictions of various Monte Carlo event generator models which simulate the full hadronic final state

    Measurement of the transverse momentum and ϕ∗ηϕη∗ distributions of Drell–Yan lepton pairs in proton–proton collisions at s√=8s=8 TeV with the ATLAS detector

    Get PDF
    Distributions of transverse momentum p T and the related angular variable φ∗ η of Drell–Yan lepton pairs are measured in 20.3 fb−1 of proton–proton collisions at √s = 8 TeV with the ATLAS detector at the LHC. Measurements in electron-pair and muon-pair final states are corrected for detector effects and combined. Compared to previous measurements in proton–proton collisions at √s = 7 TeV, these new measurements benefit from a larger data sample and improved control of systematic uncertainties. Measurements are performed in bins of lepton-pair mass above, around and below the Z-boson mass peak. The data are compared to predictions from perturbative and resummed QCD calculations. For values of φ∗ η < 1 the predictions from the Monte Carlo generator ResBos are generally consistent with the data within the theoretical uncertainties. However, at larger values of φ∗ η this is not the case. Monte Carlo generators based on the parton-shower approach are unable to describe the data over the full range of p T while the fixed-order prediction of Dynnlo falls below the data at high values of p T . ResBos and the parton-shower Monte Carlo generators provide a much better description of the evolution of the φ∗ η and p T distributions as a function of lepton-pair mass and rapidity than the basic shape of the data. Conte

    Performance of algorithms that reconstruct missing transverse momentum in √s= 8 TeV proton-proton collisions in the ATLAS detector

    Get PDF
    The reconstruction and calibration algorithms used to calculate missing transverse momentum (EmissT ) with the ATLAS detector exploit energy deposits in the calorimeter and tracks reconstructed in the inner detector as well as the muon spectrometer. Various strategies are used to suppress effects arising from additional proton–proton interactions, called pileup, concurrent with the hard-scatter processes. Tracking information is used to distinguish contributions from the pileup interactions using their vertex separation along the beam axis. The performance of the EmissT reconstruction algorithms, especially with respect to the amount of pileup, is evaluated using data collected in proton–proton collisions at a centre-of-mass energy of 8 TeV during 2012, and results are shown for a data sample corresponding to an integrated luminosity of 20.3fb−1. The simulation and modelling of EmissT in events containing a Z boson decaying to two charged leptons (electrons or muons) or a W boson decaying to a charged lepton and a neutrino are compared to data. The acceptance for different event topologies, with and without high transverse momentum neutrinos, is shown for a range of threshold criteria for EmissT , and estimates of the systematic uncertainties in the EmissT measurements are presented.ATLAS Collaboration, for complete list of authors see dx.doi.org/10.1140/epjc/s10052-017-4780-2Funding: We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently.We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF and DNSRC, Denmark; IN2P3-CNRS, CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, HGF, and MPG, Germany; GSRT, Greece; RGC, Hong Kong SAR, China; ISF, I-CORE and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; RCN, Norway; MNiSW and NCN, Poland; FCT, Portugal; MNE/IFA, Romania; MES of Russia and NRC KI, Russian Federation; JINR; MESTD, Serbia; MSSR, Slovakia; ARRS and MIZŠ, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and Wallenberg Foundation, Sweden; SERI, SNSF and Cantons of Bern and Geneva, Switzerland; MOST, Taiwan; TAEK, Turkey; STFC, UK; DOE and NSF, United States of America. In addition, individual groups and members have received support from BCKDF, the Canada Council, CANARIE, CRC, Compute Canada, FQRNT, and the Ontario Innovation Trust, Canada; EPLANET, ERC, FP7, Horizon 2020 and Marie Skłodowska-Curie Actions, European Union; Investissements d’Avenir Labex and Idex, ANR, Région Auvergne and Fondation Partager le Savoir, France; DFG and AvH Foundation, Germany; Herakleitos, Thales and Aristeia programmes co-financed by EU-ESF and the Greek NSRF; BSF, GIF and Minerva, Israel; BRF, Norway; Generalitat de Catalunya, Generalitat Valenciana, Spain; the Royal Society and Leverhulme Trust, United Kingdom. The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN, the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA), the Tier-2 facilities worldwide and large non-WLCG resource providers. Major contributors of computing resources are listed in Ref. [58].</p

    Muon reconstruction efficiency and momentum resolution of the ATLAS experiment in proton-proton collisions at root s = 7 TeV in 2010

    Get PDF
    This paper presents a study of the performance of the muon reconstruction in the analysis of proton–proton collisions at √s = 7 TeV at the LHC, recorded by the ATLAS detector in 2010. This performance is described in terms of reconstruction and isolation efficiencies and momentum resolutions for different classes of reconstructed muons. The results are obtained from an analysis of J/ψ meson and Z boson decays to dimuons, reconstructed from a data sample corresponding to an integrated luminosity of 40 pb⁻¹. The measured performance is compared to Monte Carlo predictions and deviations from the predicted performance are discussed.G. Aad … P. Jackson … L. Lee … a. Petridis … N. Soni … M. White .. The ATLAS Collaboratio

    Measurements of top-quark pair differential cross-sections in the e mu channel in pp collisions at root s=13 TeV using the ATLAS detector

    Get PDF
    Funded by SCOAP

    Measurement of W(+/-)Z production in proton-proton collisions at root s=7 TeV with the ATLAS detector

    No full text

    Search for a heavy top-quark partner in final states with two leptons with the ATLAS detector at the LHC

    No full text
    corecore