5,370 research outputs found

    Exploring Large-scale Structure with Billions of Galaxies

    Full text link
    We consider cosmological applications of galaxy number density correlations to be inferred from future deep and wide multi-band optical surveys. We mostly focus on very large scales as a probe of possible features in the primordial power spectrum. We find the proposed survey of the Large Synoptic Survey Telescope may be competitive with future all-sky CMB experiments over a broad range of scales. On very large scales the inferred power spectrum is robust to photometric redshift errors, and, given a sufficient number density of galaxies, to angular variations in dust extinction and photometric calibration errors. We also consider other applications, such as constraining dark energy with the two CMB-calibrated standard rulers in the matter power spectrum, and controlling the effect of photometric redshift errors to facilitate the interpretation of cosmic shear data. We find that deep photometric surveys over wide area can provide constraints that are competitive with spectroscopic surveys in small volumes.Comment: 11 pages, 7 figures, ApJ accepted, references added, expanded discussion in Sec. 3.

    Teaching Index Numbers to economists

    Get PDF
    Economic statistics are frequently reported in the form of index numbers. This article considers how the field of Index Numbers should be approached in the teaching of a general economic degree. While the topic finds a natural home in statistics modules, it is emphasised that the area can also be referred to in the teaching of other areas of economics. It is also emphasised that the differences between Index Numbers theory and the practice of compiling economic statistics such as inflation can help students gain a better understanding of applied economic statistics. Methods for assessing learning in the area are also considered and available material to support teaching is also summarised

    Quantum phase transitions of light

    Full text link
    Recently, condensed matter and atomic experiments have reached a length-scale and temperature regime where new quantum collective phenomena emerge. Finding such physics in systems of photons, however, is problematic, as photons typically do not interact with each other and can be created or destroyed at will. Here, we introduce a physical system of photons that exhibits strongly correlated dynamics on a meso-scale. By adding photons to a two-dimensional array of coupled optical cavities each containing a single two-level atom in the photon-blockade regime, we form dressed states, or polaritons, that are both long-lived and strongly interacting. Our zero temperature results predict that this photonic system will undergo a characteristic Mott insulator (excitations localised on each site) to superfluid (excitations delocalised across the lattice) quantum phase transition. Each cavity's impressive photon out-coupling potential may lead to actual devices based on these quantum many-body effects, as well as observable, tunable quantum simulators. We explicitly show that such phenomena may be observable in micro-machined diamond containing nitrogen-vacancy colour centres and superconducting microwave strip-line resonators.Comment: 11 pages, 5 figures (2 in colour

    Induced measures in the space of mixed quantum states

    Full text link
    We analyze several product measures in the space of mixed quantum states. In particular we study measures induced by the operation of partial tracing. The natural, rotationally invariant measure on the set of all pure states of a N x K composite system, induces a unique measure in the space of N x N mixed states (or in the space of K x K mixed states, if the reduction takes place with respect to the first subsystem). For K=N the induced measure is equal to the Hilbert-Schmidt measure, which is shown to coincide with the measure induced by singular values of non-Hermitian random Gaussian matrices pertaining to the Ginibre ensemble. We compute several averages with respect to this measure and show that the mean entanglement of N×NN \times N pure states behaves as lnN-1/2.Comment: 12 latex pages, 2 figures in epsf, submited to J. Phys. A. ver.3, some improvements and a few references adde

    Alignment between PIN1 Polarity and Microtubule Orientation in the Shoot Apical Meristem Reveals a Tight Coupling between Morphogenesis and Auxin Transport

    Get PDF
    Morphogenesis during multicellular development is regulated by intercellular signaling molecules as well as by the mechanical properties of individual cells. In particular, normal patterns of organogenesis in plants require coordination between growth direction and growth magnitude. How this is achieved remains unclear. Here we show that in Arabidopsis thaliana, auxin patterning and cellular growth are linked through a correlated pattern of auxin efflux carrier localization and cortical microtubule orientation. Our experiments reveal that both PIN1 localization and microtubule array orientation are likely to respond to a shared upstream regulator that appears to be biomechanical in nature. Lastly, through mathematical modeling we show that such a biophysical coupling could mediate the feedback loop between auxin and its transport that underlies plant phyllotaxis

    Rare region effects at classical, quantum, and non-equilibrium phase transitions

    Full text link
    Rare regions, i.e., rare large spatial disorder fluctuations, can dramatically change the properties of a phase transition in a quenched disordered system. In generic classical equilibrium systems, they lead to an essential singularity, the so-called Griffiths singularity, of the free energy in the vicinity of the phase transition. Stronger effects can be observed at zero-temperature quantum phase transitions, at nonequilibrium phase transitions, and in systems with correlated disorder. In some cases, rare regions can actually completely destroy the sharp phase transition by smearing. This topical review presents a unifying framework for rare region effects at weakly disordered classical, quantum, and nonequilibrium phase transitions based on the effective dimensionality of the rare regions. Explicit examples include disordered classical Ising and Heisenberg models, insulating and metallic random quantum magnets, and the disordered contact process.Comment: Topical review, 68 pages, 14 figures, final version as publishe

    Evidence and Ideology in Macroeconomics: The Case of Investment Cycles

    Get PDF
    The paper reports the principal findings of a long term research project on the description and explanation of business cycles. The research strongly confirmed the older view that business cycles have large systematic components that take the form of investment cycles. These quasi-periodic movements can be represented as low order, stochastic, dynamic processes with complex eigenvalues. Specifically, there is a fixed investment cycle of about 8 years and an inventory cycle of about 4 years. Maximum entropy spectral analysis was employed for the description of the cycles and continuous time econometrics for the explanatory models. The central explanatory mechanism is the second order accelerator, which incorporates adjustment costs both in relation to the capital stock and the rate of investment. By means of parametric resonance it was possible to show, both theoretically and empirically how cycles aggregate from the micro to the macro level. The same mathematical tool was also used to explain the international convergence of cycles. I argue that the theory of investment cycles was abandoned for ideological, not for evidential reasons. Methodological issues are also discussed

    Time-dependent covariates in the cox proportional-hazards regression model

    Get PDF
    The Cox proportional-hazards regression model has achieved widespread use in the analysis of time-to-event data with censoring and covariates. The covariates may change their values over time. This article discusses the use of such time-dependent covariates, which offer additional opportunities but must be used with caution. The interrelationships between the outcome and variable over time can lead to bias unless the relationships are well understood. The form of a time-dependent covariate is much more complex than in Cox models with fixed (non–time-dependent) covariates. It involves constructing a function of time. Further, the model does not have some of the properties of the fixed-covariate model; it cannot usually be used to predict the survival (time-to-event) curve over time. The estimated probability of an event over time is not related to the hazard function in the usual fashion. An appendix summarizes the mathematics of time-dependent covariates

    Measurement of the cross-section and charge asymmetry of WW bosons produced in proton-proton collisions at s=8\sqrt{s}=8 TeV with the ATLAS detector

    Get PDF
    This paper presents measurements of the W+μ+νW^+ \rightarrow \mu^+\nu and WμνW^- \rightarrow \mu^-\nu cross-sections and the associated charge asymmetry as a function of the absolute pseudorapidity of the decay muon. The data were collected in proton--proton collisions at a centre-of-mass energy of 8 TeV with the ATLAS experiment at the LHC and correspond to a total integrated luminosity of 20.2~\mbox{fb^{-1}}. The precision of the cross-section measurements varies between 0.8% to 1.5% as a function of the pseudorapidity, excluding the 1.9% uncertainty on the integrated luminosity. The charge asymmetry is measured with an uncertainty between 0.002 and 0.003. The results are compared with predictions based on next-to-next-to-leading-order calculations with various parton distribution functions and have the sensitivity to discriminate between them.Comment: 38 pages in total, author list starting page 22, 5 figures, 4 tables, submitted to EPJC. All figures including auxiliary figures are available at https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/STDM-2017-13

    Search for squarks and gluinos with the ATLAS detector in final states with jets and missing transverse momentum using √s=8 TeV proton-proton collision data

    Get PDF
    A search for squarks and gluinos in final states containing high-p T jets, missing transverse momentum and no electrons or muons is presented. The data were recorded in 2012 by the ATLAS experiment in s√=8 TeV proton-proton collisions at the Large Hadron Collider, with a total integrated luminosity of 20.3 fb−1. Results are interpreted in a variety of simplified and specific supersymmetry-breaking models assuming that R-parity is conserved and that the lightest neutralino is the lightest supersymmetric particle. An exclusion limit at the 95% confidence level on the mass of the gluino is set at 1330 GeV for a simplified model incorporating only a gluino and the lightest neutralino. For a simplified model involving the strong production of first- and second-generation squarks, squark masses below 850 GeV (440 GeV) are excluded for a massless lightest neutralino, assuming mass degenerate (single light-flavour) squarks. In mSUGRA/CMSSM models with tan β = 30, A 0 = −2m 0 and μ > 0, squarks and gluinos of equal mass are excluded for masses below 1700 GeV. Additional limits are set for non-universal Higgs mass models with gaugino mediation and for simplified models involving the pair production of gluinos, each decaying to a top squark and a top quark, with the top squark decaying to a charm quark and a neutralino. These limits extend the region of supersymmetric parameter space excluded by previous searches with the ATLAS detector
    corecore