804 research outputs found

    Three-point correlators for giant magnons

    Get PDF
    Three-point correlation functions in the strong-coupling regime of the AdS/CFT correspondence can be analyzed within a semiclassical approximation when two of the vertex operators correspond to heavy string states having large quantum numbers while the third vertex corresponds to a light state with fixed charges. We consider the case where the heavy string states are chosen to be giant magnon solitons with either a single or two different angular momenta, for various different choices of light string states.Comment: 15 pages. Latex. v2: Misprints corrected. Published versio

    Signatures of arithmetic simplicity in metabolic network architecture

    Get PDF
    Metabolic networks perform some of the most fundamental functions in living cells, including energy transduction and building block biosynthesis. While these are the best characterized networks in living systems, understanding their evolutionary history and complex wiring constitutes one of the most fascinating open questions in biology, intimately related to the enigma of life's origin itself. Is the evolution of metabolism subject to general principles, beyond the unpredictable accumulation of multiple historical accidents? Here we search for such principles by applying to an artificial chemical universe some of the methodologies developed for the study of genome scale models of cellular metabolism. In particular, we use metabolic flux constraint-based models to exhaustively search for artificial chemistry pathways that can optimally perform an array of elementary metabolic functions. Despite the simplicity of the model employed, we find that the ensuing pathways display a surprisingly rich set of properties, including the existence of autocatalytic cycles and hierarchical modules, the appearance of universally preferable metabolites and reactions, and a logarithmic trend of pathway length as a function of input/output molecule size. Some of these properties can be derived analytically, borrowing methods previously used in cryptography. In addition, by mapping biochemical networks onto a simplified carbon atom reaction backbone, we find that several of the properties predicted by the artificial chemistry model hold for real metabolic networks. These findings suggest that optimality principles and arithmetic simplicity might lie beneath some aspects of biochemical complexity

    Exploring Relationship between Perception Indicators and Mitigation Behaviors of Soil Erosion in Undergraduate Students in Sonora, Mexico

    Get PDF
    Soil erosion represents a critical socio-economic and environmental hazard for Mexico and the world. Given that soil erosion is a phenomenon influenced by human activities, it is essential to know the level of cultural perspectives on this matter. An instrument with eight scales was applied to 275 university students from a northwestern Mexican city, which measured the knowledge about soil erosion, self-efficacy in solving the problem, future perspectives, perceived consequences, obstacles to addressing soil erosion, and mitigation intentions and behaviors. To analyze the relationship between the scales and the intentions and behaviors of soil erosion mitigation, a model of structural equations was tested. In summary, the participants know the problem of soil erosion, its impacts, and recognize risks to human and environmental health. They also know their important role within soil conservation; however, they identified significant obstacles to action. This study determined that each indicator has a correlation with soil erosion mitigation intentions except for the obstacles. The indicators that had the greatest positive relationship in mitigation intentions were knowledge, self-efficacy, and the perspective of the future. The implications of these results open the landscape to the creation of efficient strategies to mitigate soil erosion in this region and Mexico.</jats:p

    Observation of associated near-side and away-side long-range correlations in √sNN=5.02  TeV proton-lead collisions with the ATLAS detector

    Get PDF
    Two-particle correlations in relative azimuthal angle (Δϕ) and pseudorapidity (Δη) are measured in √sNN=5.02  TeV p+Pb collisions using the ATLAS detector at the LHC. The measurements are performed using approximately 1  Όb-1 of data as a function of transverse momentum (pT) and the transverse energy (ÎŁETPb) summed over 3.1<η<4.9 in the direction of the Pb beam. The correlation function, constructed from charged particles, exhibits a long-range (2<|Δη|<5) “near-side” (Δϕ∌0) correlation that grows rapidly with increasing ÎŁETPb. A long-range “away-side” (Δϕ∌π) correlation, obtained by subtracting the expected contributions from recoiling dijets and other sources estimated using events with small ÎŁETPb, is found to match the near-side correlation in magnitude, shape (in Δη and Δϕ) and ÎŁETPb dependence. The resultant Δϕ correlation is approximately symmetric about π/2, and is consistent with a dominant cos⁥2Δϕ modulation for all ÎŁETPb ranges and particle pT

    Affective recognition from EEG signals: an integrated data-mining approach

    Get PDF
    Emotions play an important role in human communication, interaction, and decision making processes. Therefore, considerable efforts have been made towards the automatic identification of human emotions, in particular electroencephalogram (EEG) signals and Data Mining (DM) techniques have been then used to create models recognizing the affective states of users. However, most previous works have used clinical grade EEG systems with at least 32 electrodes. These systems are expensive and cumbersome, and therefore unsuitable for usage during normal daily activities. Smaller EEG headsets such as the Emotiv are now available and can be used during daily activities. This paper investigates the accuracy and applicability of previous affective recognition methods on data collected with an Emotiv headset while participants used a personal computer to fulfill several tasks. Several features were extracted from four channels only (AF3, AF4, F3 and F4 in accordance with the 10–20 system). Both Support Vector Machine and Naïve Bayes were used for emotion classification. Results demonstrate that such methods can be used to accurately detect emotions using a small EEG headset during a normal daily activity
    • 

    corecore