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Abstract

String theory on AdS3×S3×T4 has 20 moduli. We investigate how the perturbative
closed string spectrum changes as we move around this moduli space in both the RR
and NSNS flux backgrounds. We find that, at weak string coupling, only four of the
moduli affect the energies. In the RR background the only effect of these moduli
is to change the radius of curvature of the background. On the other hand, in the
NSNS background, the moduli introduce worldsheet interactions which enable the
use of integrability methods to solve the spectral problem. Our results show that
the worldsheet theory is integrable across the 20 dimensional moduli space.
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1 Introduction

The AdS3/CFT2 correspondence [1] is an intriguing example of holography. One simple
reason for this is the intermediate amount of supersymmetry, which allows rich and
interesting physical phenomena, while at the same time retaining sufficient control for
precise computations. For example, partly because of the low amount of supersymmetry,
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the dual pair has a large number of moduli. Perhaps a more significant reason for interest
in this dual pair is the keystone role that AdS3/CFT2 plays in diverse areas, such as black-
hole entropy [2], the ADHM construction [3] of instantons and their moduli space [4,5],
or holography of two-dimensional maximally-supersymmetric SQCD. For a review of the
AdS3/CFT2 correspondence see [6].

A compelling feature of AdS3/CFT2 is that the D-brane construction used to con-
jecture this duality does not directly provide a CFT2 living on the brane worldvolume.
Rather, the low-energy dynamics of D1/D5 open strings is given by two-dimensional
super-Yang-Mills theory (SYM) coupled to adjoint and fundamental matter. In the IR
this theory flows to a direct sum of Coulomb and Higgs branch CFTs [7], with the lat-
ter conjectured to be the dual to strings on the near-horizon AdS3 geometry [1]. This
behaviour is in sharp contrast to the more supersymmetric cases where the D3- and
M2-brane worldvolume gauge theories are conformal.

The lack of a perturbative gauge theory description has made direct tests of the
AdS3/CFT2 correspondence more challenging. Based on topological arguments [8], it
has been suggested that the CFT2 should be closely related to a deformation of a SymN

orbifold [5]. The location of the SymN orbifold point in the near-horizon moduli space
has been discussed in [9], but a precise understanding of the relationship between this
orbifold and the full string theory remains to be understood more fully, as discussed for
example on pp. 9-10 of [10]. Nevertheless, many quantities protected by supersymmetry
have been matched between strings on AdS3 and the SymN orbifold. However, these tests
cannot establish the exact nature of the relationship between string theory on AdS3 and
the SymN orbifold, precisely because the matching involves only protected quantitites
and so does not depend on how, for example, the moduli enter the dictionary. One
outstanding problem is to identify precisely the states dual to perturbative closed strings
in the SymN orbifold.

To make progress on this question, we investigate perturbative closed string states
on AdS3 × S3 × T4 with zero winding and zero momentum on T4, which we denote by
H(0,0). Working in the Green-Schwarz formulation, we determine what effect varying
the 20 moduli has on the spectrum of H(0,0). As is well known [5], there are many type
IIB string theory backgrounds on the space-time AdS3 × S3 × T4. These differ from one
another by the charges that the space-time carries. In this paper we will consider two
such distinct AdS3 backgrounds corresponding to the near-horizon limit of D1/D5 and
F1/NS5 brane configurations, returning to backgrounds with more general charges in
the future.1 We find that for both types of AdS3 backgrounds only 4 moduli affect the
H(0,0) spectrum. In the D1/D5 background, these 4 are the dilaton φ and the 3 moduli
associated with the self-dual NSNS potential B+. In the F1/NS5 brane background these
are instead the 3 moduli associated to the self-dual part of the RR two-form potential
C+

2 on T4 and the modulus associated with a linear combination of C0 and C4.

1In this paper, we will consider a string theory modulus to be a scalar field that can acquire a vacuum
expectation value without changing the background charges. This should be contrasted with a U-duality
transformation which will generically change the charges of the background. For example, changing one
of the radii of T4 is a modulus of the D1/D5-brane or the F1/NS5-brane near-horizon theories. On the
other hand, performing an S-duality maps one between the D1/D5 and F1/NS5 backgrounds and so
should not be thought of as a marginal deformation.
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In the AdS3 theory supported by RR flux, backgrounds with different values of B+

are related by T-duality. As a result, the energies of H(0,0) states are unchanged apart
from a modification of the radius of curvature of the theory

R2 = α′gsN5

√

1 + 1
2
(B+)2, (1.1)

where N5 is the number of D5-branes of the background. Consequently, energies of H(0,0)

states at any value of these moduli can be determined using the Bethe Equations (BEs)
found in [11] by simply modifying R in this way.

Turning on the four RR moduli in the AdS3 theory supported by NSNS flux has a
more significant effect on the worldsheet action. As we show, turning on these moduli
induces non-zero RR field-strength couplings and the world-sheet action takes the same
form (up to T-dualities) as the mixed-flux theories considered in [12–14]. The energies
of H(0,0) states then follow from the BEs found in [11], using the exact S matrices
determined in [13, 14], upon a suitable identification of parameters. We show that in
the AdS3 theory supported by NSNS flux the strength of the integrable interactions,
conventionally denoted by h is given by2

h = −gsc0k

2π
+ . . . , (1.2)

where k is the WZW level, c0 is the value of the RR moduli, and subleading corrections
in R are denoted by ellipses. Setting the RR moduli to zero turns off the integrable
interactions, which reduces the model to a GS version of the WZW CFT analysed by
Maldacena and Ooguri [15]. What is more, by analogy with higher-dimensional holog-
raphy we see that (at large R) c0k plays the role of the ’t Hooft coupling constant

√
λ,

and one is led to considering suitable double-scaling limits of c0 and k to capture leading
(planar) dynamics.

This paper is organised as follows. In section 2 we review the moduli space of strings
on AdS3 × S3 × T4. In sections 3 and 4 we determine the effect of moduli on H(0,0) in
the D1/D5 and F1/NS5 backgrounds, respectively. In section 5 we present the complete
backreacted geometries with non-zero moduli. We conclude in section 6. The more
technical aspects of our results are relegated to the appendices.

2 The Moduli

In this section we briefly review the moduli space of Type IIB strings on AdS3 ×S3 ×T4,
summarising some of the results of [9]. Type IIB compactified on T4, in directions

x6, . . . , x9, has 25 scalars which parametrise the coset SO(5,5)
SO(5)×SO(5)

. By wrapping D5-

branes (respectively, NS5-branes) on T4, and D1-branes (fundamental strings) transverse
to T4 but parallel to the other 5-brane directions we obtain the BPS D1/D5 (F1/NS5)
background. In the near-horizon limit of both geometries, five of the above scalars get

2In the integrable literature this is conventionally denoted by h(λ) where λ = R4/α′2 is the ’t
Hooft coupling constant. In this paper, we will write h(R) rather than h(λ), since R is a more natural
parameter from the string theory point of view.
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fixed through the attractor mechanism [16] and cannot be varied. The remaining 20
scalars parametrise the moduli space of Type IIB strings on AdS3 × S3 × T4, which
locally takes the form of a coset

K =
SO(5, 4)

SO(5) × SO(4)
. (2.1)

The U-duality group SO(5, 5;Z) [17] acts both on K and on the background charges. A
subgroup of the U-duality group, denoted by Hq in [9], leaves the background charges
invariant, yet acts non-trivially on K through global identifications. As a result [9],
globally the moduli space is Hq\K.

2.1 Moduli and fixed scalars in the D1/D5 geometry

The near-horizon limit of the D1/D5 geometry is AdS3 × S3 × T4 supported by RR
three-form flux, and the 20 moduli are:3

(i) 9 geometric moduli of T4 excluding the overall volume v,

(ii) 6 moduli from the RR two-form potential on T4,

(iii) 3 moduli from the self-dual part of the NSNS two-form B+ on T4,

(iv) the string coupling constant gs, and

(v) 1 linear combination of RR scalar and four-form potential on T4.4

In this background the five fixed scalars are

(a) 3 scalars from the anti-self-dual part of the NSNS two-form potential on T4,

(b) the volume of T4, v, and

(c) a second linear combination of the RR scalar and four-form potentials.

The values that these five scalars take varies with the moduli, and can be determined by
minimising the BPS mass-charge formula for the background, which in the case of the
D1/D5 system reduces to solving equations (10)-(12) of [9]. For example, at the point

Gij =
√
vδij, C2 = 0, B+ = 0, C0 = 0, (2.2)

where i, j = 6, 7, 8, 9, we have

v =
N1

N5
, B− = 0, C4 = 0, (2.3)

where N1 and N5 denotes the number of D1 and D5 branes, respectively.

3More precise definitions of the moduli will be given in section 3.
4We will find it convenient to treat the RR scalar C0 as the modulus and the four form C4 on T orus4

as fixed. A more accurate description would be to say that one linear combination of these modes
remains massless, and thus is a proper modulus, while the other combination obtains a mass and hence
gets a fixed expectation value.
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2.2 Moduli and fixed scalars in the F1/NS5 geometry

Similarly, the near-horizon limit of the F1/NS5 geometry is AdS3 × S3 × T4 supported
by NSNS three-form flux, and the 20 moduli are:

(i) 9 geometric moduli of T4 excluding the overall volume v,

(ii) 6 moduli from the NSNS two-form potential on T4,

(iii) 3 moduli from the self-dual part of the RR two-form potential on T4,

(iv) the string coupling constant gs, and

(v) 1 linear combination of RR scalar and four-form potential on T4.

Here the five fixed scalars are

(a) 3 scalars from the anti-self-dual part of the RR two-form potential on T4,

(b) the volume of T4, v, and

(c) a second linear combination of the RR scalar and four-form potentials.

The values of the fixed scalars are determined by solving equations (15)-(17) of [9]. For
example, at the point

Gij =
√
vδij , B = 0, C+ = 0, C0 = 0 (2.4)

we have

v =
NF1

k
g2
s , C− = 0, C4 = 0, (2.5)

where k and NF1 are the number of NS5-branes and fundamental strings, respectively.

3 Closed strings and moduli in D1/D5 background

As reviewed in section 2.1, the near-horizon D1/D5 geometry has 20 moduli. In this
section, we establish what effect these moduli have on energies of H(0,0) states. We find
that the spectrum is independent of 16 of them, and determine the influence of the
remaining 4 at weak string coupling. It turns out that varying these 4 moduli has a
remarkably simple effect on H(0,0). The energy spectrum is determined in terms of the
radius of curvature R, which depends on the 4 moduli, as well as on N5.

Below we investigate how moduli enter the GS action. We find that for 16 moduli
the action remains invariant up to simple field redefinitions. Of the remaining 4, one is
gs whose only effect is to change R, via equation (1.1). As we show below, the other 3
moduli have a non-trivial effect on the action. Luckily, it turns out that this new action
is related to the original one through T-duality. As a result, the H(0,0) spectrum at any
value of these 3 moduli is determined from the one found in [11, 18] together with a
suitable identification of R, which will now depend on these moduli.
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3.1 The inconsequential moduli

The energies of states in H(0,0) do not depend on the 16 moduli (i), (ii) and (v) of
section 2.1. It is straightforward to see that the geometric moduli of T4 have no effect
on H(0,0). This is because given any flat metric on T4 we can always redefine the xi to
reduce to the metric (2.2) used in [19]. While such a redefinition changes the periodicity
conditions of the xi, this has no effect on the zero-winding zero-momentum states of
H(0,0).

5

Next consider turning on a non-zero constant C2 on T4. The gauge-invariant RR
field strengths are defined as

Fp+1 = dCp − Cp−2 ∧H, H = dB, (3.1)

with H ≡ 0 in this geometry. We see immediately that a constant C2 has no effect on
the field strengths, which in turn leaves the equations of motion and Bianchi identities
unchanged, since these depend only on the field strengths rather than potentials (see
equation (A.11)). We may therefore conclude that the AdS3 × S3 × T4 geometry with
RR flux can be deformed by turning on a constant C2. What is more, the background
charges do not change as we vary C2.

6 We can see this explicitly by integrating the
equations of motion/Bianchi identities for the fluxes [20]. For example, D5-brane and
D3-brane charges are given by

QD5 =
1

2κ2
0

∫

S3

F3 = µ5N5,

QD3 =
1

2κ2
0

∫

S3×T2
ij

F5 + C2 ∧H = 0,
(3.2)

neither of which depends on C2.
7 Similarly, one can check that the D1-, NS5- and F1-

charges remain respectively N1, 0 and 0 for all values of C2. This shows that turning
on a constant C2 in this geometry corresponds to adjusting the values of the 6 moduli
listed in (ii) of section 2.1. The GS action depends only on field strengths and not on
potentials, and so does not change as we vary C2. We conclude that the 6 C2 have no
effect on the energies of states in H(0,0).

By an almost identical analysis to the above, one finds that the modulus C0 also has
no effect on the H(0,0) spectrum. Turning on constant values for C0 and C4 leaves the
field strengths unchanged and so equations of motions and Bianchi identities continue
to be satisfied. Adding constant C0 and C4 potentials does change the F1 charge

QF1 =
1

2κ2
0

∫

S3×T4

e−2Φ ∗H + C0F7 + C4 ∧ F3 − 1
2
B ∧ C2 ∧ F3. (3.3)

5Note that the spectrum is also independent of v, since we can rescale the T4 coordinates xi →
v−1/4xi. The resulting change in xi periodicity conditions is also inconsequential for H(0,0) strings.

6This is consistent with the fact that a constant RR potential does not induce any additional brane
charges in the D1 or D5 brane worldvolume theories.

7In the case of the D3-brane charge this is because both F5 and H are identically zero.
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However, the value of C4 is not an independent modulus. Rather it is determined in
terms of C0, B

+ and C2 by equation (11) of [9]. This ensures that the F1 charge is zero8

QF1 =
1

2κ2
0

∫

S3×T4

e−2Φ ∗H = 0. (3.4)

As above, since the Green-Schwarz action depends only on field strengths rather than
potentials we conclude that C0 has no effect on the H(0,0) spectrum.

3.2 The consequential moduli

In this subsection we show that the energies of states in H(0,0) depend on gs and B+

listed as (iii) and (iv) in section 2.1. The effect of varying gs is well understood. The
radius of AdS3 and gs are related by equation (1.1). For gs ≪ 1, where perturbative
string theory is valid, varying gs changes the energies of worldsheet excitations through
the function h(R) as described in equation (6.3).

At first sight, one might conclude that a constant B+ should be just as inconsequential
as a constant C2. It is certainly true that adding a constant B+ does not change the
field strengths and so gives a consistent family of AdS3 backgrounds. However, this
deformation does not correspond to turning on a modulus in the near-horizon D1/D5
geometry because the background has a non-zero D3-brane charge9

QD3 =
1

2κ2
0

∫

S3×T2
ij

F5 − B+ ∧ F3 6= 0. (3.5)

To find a background with QD3 = 0 we need to further add a non-constant10 C4

dC4 = B+ ∧ F3. (3.6)

The explicit expression for the geometry and fluxes is given in Appendix B, with the
AdS3 radius of curvature R given by

R2 = α′eφN5

√

1 + 1
2
(B+)2. (3.7)

This geometry corresponds to the near-horizon limit of the fully back-reacted D1/D5
system with non-zero B+ moduli [22, 23], which we discuss in section 5.1.

To recapitulate, turning on B+ moduli in the AdS3 geometry with RR three-form
flux induces a non-trivial F5 flux. This clearly modifies the GS action and so should
have a non-trivial effect on the energies of H(0,0) states. Fortunately, it is possible to
establish how the spectrum varies with the B+ moduli without having to repeat the

8While a constant C0 (respectively C4) induces F1 charge on the D1 (D5) worldvolume, a suitable
linear combination of C0 and C4 has a trivial net effect.

9A constant B field induces D3-brane charge in the D5-brane worldvolume theory through its WZ
couplings [21]. As a result, we may anticipate that the B+ modulus in this background will be more
subtle than C2.

10The resulting F5 6= 0 is self-dual and satisfies its equation of motion.
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lengthy calculations of [19]. This is because, as is well-known [22,23], turning on a non-
zero B+ modulus is equivalent to performing T-dualities and field redefinitions of the
T4 coordinates together with a compensating shift in the B field. As we show below,
understanding the effect of these manipulations on the spectrum is straightforward.

3.3 TrT and String Sigma model

Let us briefly review the procedure of [22,23]. In the undeformed D1/D5 background 11

perform a T-duality along one of the T4 directions, say x6, followed by a redefinition of
the (x6, x7) variables

x6 → x6 cosϕ+ x7 sinϕ, x7 → x7 cosϕ− x6 sinϕ, (3.8)

and then a T-duality back along x6. We will call this a TrT transformation, since it is
similar to, though distinct from, the TsT transformations, much used in AdS5 [24, 25].
Starting with a square T2 of area A with no B field, a TrT transformation maps to a
square T2 of area Ã = A(cos2 ϕ + A2 sin2 ϕ)−1/2 and a B-field B̃67 = (1 − A2)(cos2 ϕ +
A2 sin2 ϕ)−1/2. We can also perform a TrT transformation, parametrised by ψ, in the
(x8, x9) directions. respectively. The resulting TrT2 backgrounds carry D1-, D3- and
D5-brane charges.12 However, we can further add a constant B-field

B̃67 → B̃67 + b67, B̃89 → B̃89 + b89, (3.9)

which, if chosen judiciously [22,23], (see equation (5.15)) precisely cancels the D3-brane
charges of the TrT2 background. Restricting to

ϕ = ψ, (3.10)

sets vol(T 2
67) = vol(T 2

89). In summary, turning on the B+
67 modulus is equivalent to a

TrT2 deformation with ϕ = ψ and an additional constant B field.
Let us now consider the effect of these manipulations on the worldsheet action. A

constant shift of the B field (3.9), has no effect on the GS action since this depends only
on field strengths. While such a B field does modify the periodicity conditions of the
T4 coordinates xi, this has no effect on the zero-momentum, zero-winding strings that
we are interested in. As a result, the H(0,0) spectrum of the theory deformed by a B+

modulus is the same as the H(0,0) spectrum of the TrT2 theory with ψ = ϕ. In turn, the
H(0,0) spectrum of the TrT2 theory can be obtained from the original undeformed theory
by analysing the effects of T-dualities and field redefinitions, as we now describe.

The T4 coordinates xi enter the GS action only through their derivatives, since they
correspond to U(1) isometries

S = − 1

4π

∫

d2σ
(

γαβ∂αx
i∂βx

jGij − ǫαβ∂αx
i∂βx

jBij

+ 2∂αx
i
(

γαβUβ,i − ǫαβVβ,i
)

+ Lrest

)

.
(3.11)

11See appendix 5.1 for a presentation of the D1/D5 system in our conventions.
12Explicit expressions for the metric and other fields in are presented in section 5.2.
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The explicit couplingsG,B, V and U can be found in [19] to quadratic order in fermions.13

The Noether currents for the xi shift symmetries are

Jαi (x) = −
(

γαβ∂βx
jGij − ǫαβ∂βx

jBij + γαβUβ,i − ǫαβVβ,i
)

. (3.12)

The TrT-transformed action takes the same general form as (3.11), for the dual coordi-
nates x̃i with couplings G̃, B̃, Ũ and Ṽ . 14 The corresponding Noether currents are

J̃αi (x̃) = −
(

γαβ∂β x̃
jG̃ij − ǫαβ∂β x̃

jB̃ij + γαβŨβ,i − ǫαβṼβ,i
)

, (3.13)

and the coordinates x6,7 and x̃6,7 are related via

∂αx̃
6 = cosϕ∂αx

6 − sinϕ
(

ǫαβγ
βδ∂δx

iGi7 − ∂αx
iBi7 − ǫαβγ

βδUδ,7 − Vα,7
)

,

∂αx̃
7 = cosϕ∂αx

7 + sinϕ
(

ǫαβγ
βδ∂δx

iGi6 − ∂αx
iBi6 − ǫαβγ

βδUδ,6 − Vα,6
)

.
(3.14)

As a result, the currents Jαi and J̃αi are Bäcklund transforms of each other

J̃α6 = cosϕJα6 − sinϕ ǫαβ∂βx
7, J̃α7 = cosϕJα7 + sinϕ ǫαβ∂βx

6, (3.15)

and we have

∂σx̃
6 = cosϕ∂σx

6 − sinϕJτ7 , ∂σx̃
7 = cosϕ∂σx

7 + sinϕJτ6 . (3.16)

Integrating the above with respect to σ and reasoning in a similar way to [25], we
find that instead of analysing states with conventional periodicity on a TrT-transformed
background

x̃6(2π) − x̃6(0) = w̃6, x̃7(2π) − x̃7(0) = w̃7, (3.17)

we can consider states in the untransformed background with twisted periodicity condi-
tions for x6,7

x6(2π) − x6(0) = secϕw̃6 + P7 tanϕ, x7(2π) − x7(0) = secϕw̃7 − P6 tanϕ. (3.18)

Above, P6,7 are charges (momenta) of the currents Jα6,7. What is more, since Jτi is the
momentum variable conjugate to xi, we can in fact relate the TrT-transfomed variables
to the original ones through a canonical transformation

p̃6 = cosϕ p6 − sinϕx′
7, x̃′

6 = cosϕx′
6 − sinϕ p7,

p̃7 = cosϕ p7 + sinϕx′
6, x̃′

7 = cosϕx′
7 + sinϕ p6.

(3.19)

We therefore conclude that the spectrum of closed strings in a TrT-transformed back-
ground will be the same as the spectrum of strings with twisted periodicity condi-
tions (3.18) in the original background. This is true for all perturbative closed string
states, since the TrT transformation is an exact T-duality symmetry of the theory.

13As a result, the fermions are automatically uncharged under the U(1) isometries of T 4, unlike what
happens in TsT backgrounds [26].

14Explicit expressions for G̃, B̃, Ũ and Ṽ can be found in appendix C.
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In the H(0,0) sector of most interest in this paper, states have zero winding and
momentum, and it is easy to see that equation (3.18) maps periodic states to periodic
states. As a result, the energies of H(0,0) states before and after TrT transformations are
the same. At weak coupling, they depend only on the respective radii of curvature of
the two theories, which are equal to one another, and taking into account the shift of
the dilaton under T-duality can be written as

R2 = α′eφN5 = α′eφ̃
(

N5 cos2 ϕ+N1 sin2 ϕ
)

. (3.20)

Note that this expression is written in terms of the original D-brane charges N1 and N5.
This expression gets further corrected by the constant shift of the B field, as discussed
in section 5.2. From the arguments given above equation (3.11), we then find that the
energies of H(0,0) states depend on the value of the B+ moduli through the dependence
of R in equation (3.7).

In [11,18] the energies of H(0,0) strings were found as solutions of (essentially algebraic)
BEs. The explicit calculations were carried out at the point in moduli space given in
equation (2.2) and at small gs. It was shown that the 2-to-2 worldsheet S matrix is
fixed by symmetries alone [19, 27–29].15 and satisfies the Yang-Baxter equation. This
determines the complete worldsheet scattering and hence the spectrum through the Bethe
Ansatz.

In principle, this concludes our analysis of the dependence of the H(0,0) spectrum on gs
and B+. In the remainder of this section, we show more explicitly that deriving the 2-to-2
S matrix following [19], is fully compatible with the TrT deformations we have discussed
above. We pay particular attention to gauge-fixing, expressions for supercharges and the
off-shell algebra A under TrT. The reader not interested in these technical details may
wish to proceed directly to the next section.

T-duality along T4 directions can be used to map the background considered here to
other Type IIB backgrounds: the D3/D3’ background or the D1/D5 background with
N1 and N5 swapped, or related Type IIA backgrounds. The energies of H(0,0) states
will remain unchanged under such T-dualities and since the states carry no winding or
momentum T-duality will map them to H(0,0) states in the dual background.

3.4 TrT and gauge fixing

The string two-body S matrix found in [19] was determined in a particular gauge. It is
therefore worth checking that the gauge-fixing is compatible with TrT transformations.
The gauge fixing is a two-step process: fixing kappa gauge, and fixing uniform light-cone
gauge.

In [19] a kappa-gauge that is particularly well adapted to the underlying integrability
was used. This kappa-gauge is a simple projection on the (spectator) fermions, and as
result it commutes with T-duality and redefinitions of the T4 bosons. We can therefore

15More precisely symmetries fix the matrix part of the S matrix, leaving undetermined overall nor-
malisations known as dressing factors. The dressing factors are then determined by solving suitable
crossing equations [11, 30].
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apply TrT transformations directly at the level of the kappa-gauge-fixed action given in
equations (2.60) and (G.6) of [19].

Before proceeding to uniform light-cone gauge, we briefly comment on the relations
between the equations of motion in theories related by TrT transformations.The xi and
x̃i equations of motion are given by current conservation equations

∂αJ
α = 0, ∂αJ̃

α = 0, (3.21)

and are equivalent to one another when equation (3.14) is used. The equations of mo-
tion for the other fields, including the Virasoro constraints for the worldsheet metric
γαβ , remain the same in the original and TrT-transformed background upon using the
relations between G,B, U, V and G̃, B̃, Ũ, Ṽ , as well as equation (3.14). To see this, let
us introduce a collective field

ω(τ, σ) =
{

x±, yi, zi, χ, η, ∂αx
±, ∂αy

i, ∂αz
i, ∂αχ, ∂αη

}

. (3.22)

Then one can show that

γαβ∂αx
i∂βx

j ∂Gij

∂ω
− ǫαβ∂αx

i∂βx
j ∂Bij

∂ω
+ 2∂αx

i

(

γαβ
∂Uβ,i
∂ω

− ǫαβ
∂Vβ,i
∂ω

)

+
Lrest

∂ω
=

γαβ∂αx̃
i∂β x̃

j ∂G̃ij

∂ω
− ǫαβ∂αx̃

i∂βx̃
j ∂B̃ij

∂ω
+ 2∂αx̃

i

(

γαβ
∂Ũβ,i
∂ω

− ǫαβ
∂Ṽβ,i
∂ω

)

+
L̃rest

∂ω
. (3.23)

Hence the equations of motion for the non-T4 sigma-model fields are the same before
and after a TrT transformation. Similarly, one can show that

δS

δγαβ
=

δS̃

δγαβ
, (3.24)

confirming that the Virasoro constraints of the two theories are also the same.
In uniform light-cone gauge [19, 31] we set x+ ≡ ∂α(φ − t)/2 = τ and its conjugate

momentum, p− = 1. The Virasoro constraints then determine the non-dynamical field
x− ≡ ∂α(φ − t)/2 in terms of the transverse excitations and the worldsheet metric γαβ,
while the x± equations of motion are used to fix γαβ. As we have shown above the
x± and γαβ equations of motion are invariant under TrT transformations. As a result,
gauge-fixing the TrT-transformed action gives the same expressions for ẋ−,

′

x− and γαβ as
those found in the original background [19]; the dependence on ∂αx

i can be re-expressed
in terms of ∂αx̃

i by using equation (3.14), as well as the relations between G,B, U, V
and G̃, B̃, Ũ, Ṽ . We conclude that gauge-fixing the GS action is compatible with TrT
transformations.

3.5 Supercharges

In [19], supercurrents Qα were constructed, in terms of transverse fields and their deriva-
tives, as well as the ubiquitous non-local prefactor e±ix−

. The conservation of these
supercurrents was checked using the equations of motion. In these expressions for the
supercurrents the torus bosons xi enter only through the first derivatives ∂αx

i.
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Therefore, in order to find the supercharges in the TrT theory, one can use the
inverse of equation (3.14) to re-express Qα in terms of the transverse fields of the TrT-
transformed theory, as well as the pre-factor e±ix−

. As we reviewed in the previous
sub-section, x− is determined via the Virasoro constraints, which are the same in the
TrT-related theories upon using the relations between G,B, U, V and G̃, B̃, Ũ, Ṽ , as well
as equation (3.14). To summarise, we can express the supercurrents Qα, exclusively in
terms of the fields that enter the TrT transformed action S̃. We will denote by Q̃α this
putative supercurrent.

It remains to be checked whether Q̃α is conserved when equations of motion derived
from S̃ are used. This however, has to be, because: (i) the equations of motion for all
fields other than x̃i (including γαβ) are the same in the two theories; (ii) the x̃i equations
of motion together with equation (3.14) are equivalent to the xi equations of motion.
Therefore, Q̃α is conserved upon using equations of motion derived from S̃.

3.6 Determining the off-shell algebra A

Finally, we turn to the algebra A of supercharges which commute with the Hamiltonian.
In order to find the commutation relations of A in the undeformed theory, it was neces-
sary to redefine the fermions in order to obtain a canonical kinetic term for the fermions;
see Appendix I of [19] for details. In principal, an analogous computation should be
performed in the TrT transformed background. Explicitly one needs to find

δ2S̃

δη̄δη̇
,

δ2S̃

δχ̄δχ̇
,

δ2S̃

δχ̄δη̇
,

δ2S̃

δη̄δχ̇
. (3.25)

It is easy to see that the first two expressions involve only L̃rest. However, to quadratic
order in fermions L̃rest = Lrest, hence equations (I.1) and (I.2) of [19] remain the same
after TrT transformations. On the other hand the mixed η-χ terms at first appear to
change after a TrT transformation. We note that these terms do not involve L̃rest, and
to the order that we are working to

∂2G̃

∂χ̄∂η̇
=

∂2B̃

∂χ̄∂η̇
= 0. (3.26)

As a result, the only non-zero contributions to η-χ couplings come from Ũ and Ṽ terms,
and to the order we are working these give

−2π
δ2S̃

δχ̄δη̇
= ∂αx

iγαβ
∂2Ũβ,i
∂χ̄∂η̇

− ∂αx
iǫαβ

∂2Ṽβ,i
∂χ̄∂η̇

,

−2π
δ2S̃

δη̄δχ̇
= ∂αx

iγαβ
∂2Ũ

(f)
β,i

∂η̄∂χ̇
− ∂αx

iǫαβ
∂2Ṽ

(f)
β,i

∂η̄∂χ̇
.

(3.27)

Given the trivial contributions of G̃, B̃ to the mixed terms, and the fact that γαβ does
not depend on fermions, at quadratic order in fermions the above expressions can be
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re-written as

−2π
δ2S̃

δχ̄δη̇
=

∂

∂η̇

[

γαβ∂αx̃
i∂β x̃

j ∂G̃ij

∂χ̄
− ǫαβ∂αx̃

i∂βx̃
j ∂B̃ij

∂χ̄

+ 2∂αx̃
i

(

γαβ
∂Ũβ,i
∂χ̄

− ǫαβ
∂Ṽβ,i
∂χ̄

)

+
L̃rest

∂χ̄

]

,

−2π
δ2S̃

δη̄δχ̇
=

∂

∂χ̇

[

γαβ∂αx̃
i∂βx̃

j ∂G̃ij

∂η̄
− ǫαβ∂αx̃

i∂β x̃
j ∂B̃ij

∂η̄

+ 2∂αx̃
i

(

γαβ
∂Ũβ,i
∂η̄

− ǫαβ
∂Ṽβ,i
∂η̄

)

+
L̃rest

∂η̄

]

.

(3.28)

We now observe that the expressions inside the square-brackets above are precisely the
same as the right hand side of equation (3.23) with ω = χ̄, η̄. Therefore, using equa-
tion (3.23) we conclude that

δ2S̃

δχ̄δη̇
=

δ2S

δχ̄δη̇
,

δ2S̃

δη̄δχ̇
=

δ2S

δη̄δχ̇
. (3.29)

In other words, equation (I.3) of [19] remains unchanged16 As a result, the redefinition
of fermions in the TrT-transformed background in order to obtain a canonical kinetic
term, is the same as the one used in Appendix I of [19]. From this we finally conclude
that the commutation relations for A are also the same as [19].

4 Closed strings and moduli in F1/NS5 background

The near-horizon F1/NS5 geometry has 20 moduli, which we summarised in section 2.2.
We would like to understand their effect on energies of zero-winding zero-momentum
closed string states, which we will continue to denote by H(0,0). Here too, we find that
the spectrum is independent of 16 of them, and determine the influence of the remaining
4 at small gs. As in the previous section, our analysis will primarily rely on the effect
that the moduli have on the worldsheet Green-Schwarz action.

4.1 The inconsequential moduli

The energies of states in H(0,0) do not depend on the 16 moduli (i), (ii) and (iv) of
section 2.2. As in the D1/D5 background, the geometric moduli of T4 have no effect
on H(0,0), because they can be absorbed into suitable redefinitions of the xi. The string
action and periodicity conditions of H(0,0) are also independent of vol(T4) as before (see
footnote 5). The string coupling constant gs and vol(T4) are related to one another
through equation (17) of [9]. Since gs enters the GS action only through this relation to
vol(T 4), we conclude that at small string coupling gs has no effect on H(0,0) energies.

16Recall that one uses equation (3.14) to swap between xi and x̃i.
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Turning on a constant B 6= 0 gives a consistent background since H is unchanged
and the gauge-invariant RR field strengths (3.1) remain equal to zero. One can easily
check that the F1 and NS5 charges of the background are unchanged

QNS5 =
1

2κ2
0

∫

S3

H = µ5k,

QF1 =
1

2κ2
0

∫

S3×T4

e−2Φ ∗H + C0F7 + C4 ∧ dC2 + 1
2
H ∧ C2 ∧ C2 = µ1NF1.

(4.1)

and that the D5-, D3- and D1-brane charges are zero

QD5 =
1

2κ2
0

∫

S3

F3 + C0H = 0,

QD3 =
1

2κ2
0

∫

S3×T2
ij

F5 + C2 ∧H = 0,

QD1 =
1

2κ2
0

∫

S3×T4

F7 + C4 ∧H = 0,

(4.2)

because the RR potentials and RR gauge-invariant field strengths are all zero. In other
words, turning on the B moduli is accomplished in the geometry by setting B to a non-
zero constant on T4. The GS action depends only on gauge-invariant field strengths (H
and Fp) and so does not change as we vary B. We conclude that the 6 B moduli have
no effect on H(0,0) energies.

4.2 The consequential moduli

In this subsection we show that the energies of states in H(0,0) depend on C0 and C+
2

listed as (iii) and (v) in section 2.2. In fact, turning on a particular C+
2 modulus, is

equivalent to turning on C0 and C4, as can be seen by performing two T-dualities on T4.
As a result, we will first focus on turning on just the C0 modulus.

Let us then consider a background with constant RR potentials17

C0 = c0, C4 = −c0 e
6 ∧ e7 ∧ e8 ∧ e9. (4.3)

Since H is non-vanishing, this gives rise to non-zero RR three- and seven-form field
strengths

F3 = dC2 − C0H = −c0 H = −c0 k
(

ΩAdS3
+ ΩS3

)

,

F7 = dC6 − C4 ∧H = c0 k
(

ΩAdS3
+ ΩS3

)

∧ e6 ∧ e7 ∧ e8 ∧ e9.
(4.4)

17Note that we let the RR potential C0 take arbitrary real values. Using the SL(2,Z) symmetry of
type IIB string theory we can shift C0 by an integer: C0 → C0 −n. This transformation also acts on the
potentials C2 and C4 as a shift C2 → C2 − nB and C4 → C4 − n

2 B ∧B. Together, these transformations
leave the gauge invariant field strengths F3 and F5 unchanged, but shift the D-brane charges. We
therefore prefer to keep the charges fixed and not put any constraints on the value of C0.
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It is straightforward to check that the D5-, D3- and D1-brane charges are all zero

QD5 =
1

2κ2
0

∫

S3

F3 + C0H =
1

2κ2
0

∫

S3

−C0H + C0H = 0,

QD3 =
1

2κ2
0

∫

S3×T2
ij

F5 + C2 ∧H = 0,

QD1 =
1

2κ2
0

∫

S3×T4

F7 + C4 ∧H =
1

2κ2
0

∫

S3×T4

−C4 ∧H + C4 ∧H = 0.

(4.5)

The NS5-brane charge remains unchanged, since H stays the same, as does the F1 charge

QF1 =
1

2κ2
0

∫

S3×T4

e−2Φ ∗H + C0F7 + C4 ∧ dC2 + 1
2
H ∧ C2 ∧ C2

=
1

2κ2
0

∫

S3×T4

e−2Φ ∗H + C0F7 = k(g−2
s + c2

0) vol(T4) = µ1NF1.
(4.6)

The last equality follows from equation (17) of [9], which determines vol(T4) in terms of
the moduli. In summary, turning on a constant value of the C0 modulus is implemented
in the geometry not just through constant RR zero- and four-form potentials (4.3), but
also through induced three- and seven-form RR field strengths (4.4), with the AdS3

radius of curvature R given by18

R2 = α′k
√

1 + g2
sc

2
0. (4.7)

The non-zero RR field strengths (4.4) have an important consequence on the GS
action in this background: the world-sheet action takes the same form as the action
used to analyse mixed flux backgrounds [13,14]. This is because, from the point of view
of the GS action, a non-zero F3 generated by a non-trivial C2, or by C0H are completely
equivalent.19 As a result, the exact worldsheet S matrix found in [13,14] applies directly
to the analysis of the H(0,0) spectrum of the F1/NS5-brane theory deformed by the
C0 modulus. We simply need to relate the parameters used there to those used here!
In [13, 14] the fluxes are

eφF3 = q̃
(

ΩAdS3
+ ΩS3

)

, H = q
(

ΩAdS3
+ ΩS3

)

, (4.8)

together with the condition q2 + q̃2 = 1. So, replacing

q̃ → −gsc0k
α′

R2
, q → k

α′

R2
, (4.9)

18This geometry corresponds to the near-horizon limit of a fully back-reacted F1/NS5 system with
non-zero C0, which we obtain by U-duality from the solutions [22, 23] in section 5.4.

19The physical interpretation of the two backgrounds is of course different. The mixed flux back-
ground investigated in [13, 14] corresponds to the near-horizon limit of non-threshold bound states of
F1/NS5- and D1/D5-branes, while the background studied in this section is a marginal deformation of
the F1/NS5-brane near-horizon geometry.
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where the AdS3 radius is given in equation (4.7) above, we obtain the complete S matrix
of the C0 deformation of the pure NSNS AdS3 geometry.

The H(0,0) spectrum consists of the BMN vacuum |0〉BMN on top of which we can act
with magnon-like creation operators denoted schematically as

αI1

p1

† . . . αIK
pK

† |0〉BMN , (4.10)

where the indices I1, . . . , IK label the excitations above the BMN vacuum [32]. Each of
the αI1

p1

† carries a momentum pi and has an energy

E(pi) =

√

(

mi + kpi

2π

)2
+ 4h2(R) sin2

(

pi

2

)

, (4.11)

with the total energy of a state being the sum of the magnon energies. The strength of
the worldsheet interactions is governed by the function h(R), which in the mixed-flux
backgrounds took the form

h(R) =
q̃

2π

R2

α′
+ O(R0). (4.12)

Therefore, for the background obtained by a C0 marginal deformation of the pure NSNS
flux theory, we have

h(R) = −gsc0k

2π
+ O(R0). (4.13)

Notice that something rather remarkable happens: the strength of the worldsheet inter-
actions is now proportional to c0, and it is this parameter that plays the analogue of the
’t Hooft coupling λ that conventionally interpolates between the weakly and strongly
coupled regimes. At small c0 the interactions are weak, with the dispersion relation
becoming linear in the c0 going to zero limit. As c0 increases, the interactions become
more important, modifying the dispersion relation. Throughout this range the magnon
momenta pi satisfy Bethe Equations derived in [33]. The above conclusions are all valid
to leading order in the large-R limit, and we expect the function h(R) to receive cor-
rections when R becomes small. It would be interesting to understand these in order to
connect to the recent investigations of the k = 1 theory [34].

So far we have considered the case of a single modulus turned on. In general we can
turn on any combination of a constant C0 and a constant and self-dual C2. By a rescaling
and rotation of the torus directions we can always align C2 so that the non-vanishing
components point in directions 67 and 89. Hence we are lead to consider a solution with

C0 = c0, C2 = c2

(

e6 ∧ e7 + e8 ∧ e9
)

, C4 = −c0 e
6 ∧ e7 ∧ e8 ∧ e9. (4.14)

This solution will have non-trivial RR field strengths

F3 = −C0H, F5 = −C2 ∧H, F7 = −C4 ∧H, (4.15)

but does not carry any RR charges. In order to analyse this background we perform a
TrT transformation in the directions x6 and x7 with a rotation angle of ϕ.20 This results

20It is worth noting that marginal deformations of the WZW model on S3 have been studied in the
past using transformations similar to TrT and TsT transformations [35]. These differ from the RR
deformations considered here because of their non-trivial effect on the S3 metric.
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in a new background of the same type but where the RR potentials are now given by

C̃0 = c0 cosϕ+
√
vc2 sinϕ,

C̃2 = (c2 cosϕ− √
vc0 sinϕ)(ẽ6 ∧ ẽ7 + ẽ8 ∧ ẽ9),

C̃4 = −(c0 cosϕ+
√
vc2 sinϕ)ẽ6 ∧ ẽ7 ∧ ẽ8 ∧ ẽ9,

(4.16)

where v is volume of the original T4. If we choose the angle ϕ so that

tanϕ =
c2√
vc0

, (4.17)

the C̃2 potential vanishes and we are left with a background of the type discussed earlier
in this section, but with the value of the modulus and the AdS3 and S3 radii taking the
values

c̃0 =
(c2

2 + c2
0)

√
v

√

c2
2 + vc2

0

, R̃2 = α′k
√

1 + g2
s(c

2
0 + c2

2), (4.18)

where gs is the string coupling before the TrT transformation.

5 Fully backreacted geometries

In the previous sections we have discussed how the closed string spectrum of the near-
horizon geometry AdS3×S3×T4 is affected when the moduli of the background are turned
on. We will now see how these moduli can be introduced in the full backreacted and
asymptotically flat brane geometry. Following [22] and [23] we will start with the D1/D5
system and introduce a B field by applying two TrT transformations, as well as adding a
constant B in order to cancel the resulting D3 charges. From the resulting background
we can then obtain other F1/NS5 and D1/D5 backgrounds with non-trivial moduli by U
duality. The corresponding near-horizon geometries are discussed in appendix B. Here
we present the values of the parameters of the near-horizon solutions in terms of the
physical brane charges.

5.1 The D1/D5 system

Let us start by writing down a type IIB supergravity solution corresponding to the
standard D1/D5 system. We consider a stack of N1 D1 branes stretched along the
directions21 ζ and ξ, and a stack of N1 D5 branes along ζ , ξ, x6, x7, x8 and x9, where
the last four directions are compactified on a T4. The metric of the full D1/D5 system
is given by

ds2
D1/D5 = (f1f5)−1/2

(

−dζ2 + dξ2
)

+ (f1f5)
1/2
(

dρ2 + ρ2ds2
S3

)

+
(

f1

f5

)1/2(

dx2
6 + dx2

7 + dx2
8 + dx2

9

)

,
(5.1)

21 In order to not confuse the coordinates for the D1/D5 system with those of AdS3, we use the
coordinates ζ, ξ and ρ in the asymptotically flat geometry, and reserve t, z and r in the near-horizon
limit.

18



where

f1 = 1 +
α′ν1

ρ2
, f5 = 1 +

α′ν5

ρ2
. (5.2)

The D1/D5 system has a non-trivial dilaton

Φ =
1

2
log

f1

f5
, (5.3)

and is supported by a RR three-form

F3 = −df−1
1 ∧ dζ ∧ dξ + 2α′ν5ΩS3 . (5.4)

Note that in the asymptotic region, where ρ → ∞, the metric (5.1) becomes flat, with
the three sphere having unit radius, and the T4 having unit volume. Furthermore, the
dilaton is normalised so that it vanishes asymptotically.

The corresponding D1 and D5 charges are give by

QD5 =
1

2κ2
0

∫

S3

F3 =
ν5

(2π)5(α′)2
= µ5N5,

QD1 =
1

2κ2
0

∫

S3×T4

∗F3 =
ν1

2πα′
= µ1N1,

(5.5)

where µp = (2π)−p(α′)−(p+1)/2 is the charge density of the Dp brane. From this we find
that the parameters ν1 and ν5 are related to the number of branes by

ν1 = N1, ν5 = N5. (5.6)

Near-horizon geometry. In the near-horizon limit, the D1/D5 system geometry be-
comes AdS3 × S3 × T4. The AdS3 and S3 radii R and the dilaton and T4 volume are now
given by

R2 = α′
√

N1N5 = α′eΦN5, e2Φ = vol(T4) =
N1

N5

, (5.7)

while the other parameters are turned off.

5.2 Turning on a B field in the D1/D5 system

To turn on a B field on T4 we employ the same strategy as was discussed previously in
the near-horizon geometry: we perform a TrT2 transformation, and add a constant B
which can be adjusted so that there is no D3 charge.

The resulting metric takes to form

ds̃2
D1/D5 = (f1f5)−1/2

(

−dζ2 + dξ2
)

+ (f1f5)
1/2
(

dρ2 + ρ2ds2
S3

)

+ (f1f5)1/2f−1
ϕ

(

dx̃2
6 + dx̃2

7

)

+ (f1f5)
1/2f−1

ψ

(

dx̃2
8 + dx̃2

9)
)

, (5.8)
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and the dilaton is given by

Φ̃ =
1

2
log

f1f5

fϕfψ
, (5.9)

where

fϕ = 1 +
α′νϕ
ρ2

, νϕ = ν5 cos2 ϕ+ ν1 sin2 ϕ,

fψ = 1 +
α′νψ
ρ2

, νψ = ν5 cos2 ψ + ν1 sin2 ψ.

(5.10)

Introducing the three forms

K3 = −df−1
5 ∧ dζ ∧ dξ + 2α′ν1ΩS3 ,

K̃3 = −df−1
1 ∧ dζ ∧ dξ + 2α′ν5ΩS3 ,

(5.11)

we can write the other non-trivial background fields as

F̃3 = cosϕ cosψK̃3 − sinϕ sinψK3,

F̃5 = − f−1
ϕ

(

f5 cosϕ sinψK3 + f1 sinϕ cosψK̃3

)

∧ dx̃6 ∧ dx̃7

− f−1
ψ

(

f5 sinϕ cosψK3 + f1 cosϕ sinψK̃3

)

∧ dx̃8 ∧ dx̃9.

B̃ = −
(

f−1
ϕ (f1 − f5) cosϕ sinϕ − b67

)

dx̃6 ∧ dx̃7

−
(

f−1
ψ (f1 − f5) cosψ sinψ − b89

)

dx̃8 ∧ dx̃9

(5.12)

Let us now calculate the various Dp-brane charges carried by this solution, starting with
the D3 charges, which are given by

Q67
D3 =

1

2κ2
0

∫

S3×T2
89

(

F̃5 − B̃ ∧ F̃3

)

, Q89
D3 =

1

2κ2
0

∫

S3×T2
67

(

F̃5 − B̃ ∧ F̃3

)

. (5.13)

These charge densities are well-defined in the sense that they are given in terms of globally
defined forms, and are independent of the transverse radial coordinate. Performing the
integrals we get

µ−1
3 Q67

D3 = ν1 sinϕ(b89 sinψ − cosψ) − ν5 cosϕ(b89 cosψ + sinψ),

µ−1
3 Q89

D3 = ν1 sinψ(b67 sinϕ− cosϕ) − ν5 cosψ(b67 cosϕ+ sinϕ).
(5.14)

The vanishing of the D3-brane charges then leads to

b67 =
ν1 cosϕ sinψ + ν5 sinϕ cosψ

ν1 sinϕ sinψ − ν5 cosϕ cosψ
, b89 =

ν1 sinϕ cosψ + ν5 cosϕ sinψ

ν1 sinϕ sinψ − ν5 cosϕ cosψ
. (5.15)

From now on we will impose the above relations.
The D1 and D5 charges of the transformed background are given by

QD5 =
1

2κ2
0

∫

S3

F̃3 = µ5ν̃ = µ5Ñ5, (5.16)
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and

QD1 =
1

2κ2
0

∫

S3×T4

(

∗F̃3 + B̃ ∧ F̃5 − 1
2
B̃ ∧ B̃ ∧ F̃3

)

=
µ1ν1ν5

ν̃
= µ1Ñ1, (5.17)

where
ν̃ = ν5 cosϕ cosψ − ν1 sinϕ sinψ. (5.18)

The above relations can be used to express the parameters ν1 and ν5 in terms of the
physical quantities Ñ1 and Ñ5.

22

Near-horizon geometry. In the near-horizon limit, the transformed background is
still given by AdS3 × S3 × T4, with the AdS3 and S3 radii, dilaton and T4 volume given
by

R2 = α′√ν1ν5 = α′
√

Ñ1Ñ5, e2Φ̃ = vol(T4) =
ν1ν5

νϕνψ
=

Ñ1

Ñ5 + Ñ1 sin2(ϕ+ ψ)
. (5.19)

The near-horizon B field can be written as B = b(e6 ∧ e7 + e8 ∧ e9), with

b = −
√

√

√

√

Ñ1

Ñ5

sin(ϕ+ ψ). (5.20)

We can the write the radius R and the T4 volume as

R2 = α′eΦ̃Ñ5

√
1 + b2, vol(T4) =

1

1 + b2

Ñ1

Ñ5

. (5.21)

In this form the dependence on the moduli becomes manifest.

5.3 The F1/NS5 system with a RR two form

Let us now apply S duality to the TrT transformed D1/D5 system. We find the metric

ds2 =

√

fϕfψ

f1f5

(

−dζ2 + dξ2
)

+
√

fϕfψ
(

dρ2 + ρ2ds2
S3

)

+

√

√

√

√

fψ
fϕ

(

dx2
6 + dx2

7

)

+

√

√

√

√

fϕ
fψ

(

dx2
8 + dx2

9

)

.

(5.22)

The dilaton is given by

Φ =
1

2
log

fϕfψ
f1f5

. (5.23)

The geometry is supported by the NSNS three form

H = cosϕ cosψK̃3 − sinϕ sinψK3. (5.24)

22Note that the TrT transformation changes the charge quantisation condition so that we now should
express the parameter ν1 and ν5 in terms of new integer charges Ñ1 and Ñ5.
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There is also a RR five form

F5 = − f−1
ϕ

(

f5 cosϕ sinψK3 + f1 sinϕ cosψK̃3

)

∧ dx̃6 ∧ dx̃7

− f−1
ψ

(

f5 sinϕ cosψK3 + f1 cosϕ sinψK̃3

)

∧ dx̃8 ∧ dx̃9.
(5.25)

as well as the RR two-form potential

C2 =
(

f−1
ϕ (f1 − f5) cosϕ sinϕ− b67

)

dx̃6 ∧ dx̃7

(

f−1
ψ (f1 − f5) cosψ sinψ − b89

)

dx̃8 ∧ dx̃9.
(5.26)

This potential does not lead to any D1-brane or D5-brane charges. To see that there
also is no D3-brane charges we compute

1

2κ2
0

∫

S3×T2

(

F5 + C2 ∧H
)

= 0. (5.27)

Hence, the only non-vanishing charges are the NS5 charge

QNS5 =
1

2κ2
0

∫

S3

H = µ5ν̃. (5.28)

and the F1 charge

QF1 =
1

2κ2
0

∫

S3×T4

(

e−2Φ ∗H + C0F7 + 1
2
C2 ∧ C2 ∧H

)

=
µ1ν1ν5

ν̃
, (5.29)

Note that these charges take the same values as the D5 and D1 charges in equations (5.16)
and (5.17).

Near-horizon geometry. In the near-horizon limit, the AdS3 and S3 radii are given
by

R2 = α′√ν1ν5 = α′Ñ5

√

√

√

√1 +
Ñ1

Ñ5

sin2(ϕ+ ψ), (5.30)

where Ñ1 and Ñ5 now count the number of fundamental strings and NS5 branes. The
dilaton takes the form

e2Φ =
νϕνψ
ν1ν5

=
Ñ5

Ñ1

(

1 +
Ñ1

Ñ5

sin2(ϕ+ ψ)

)

. (5.31)

The volume of the torus vol(T4) = 1 is constant in the full backreacted geometry and
thus remains the same in the near horizon limit.

The RR two-form potential can be written as C2 = c2(e
6 ∧ e7 + e8 ∧ e9) with

c2 =
Ñ1

Ñ5

sin(ϕ+ ψ)
√

1 + Ñ1

Ñ5
sin2(ϕ+ ψ)

. (5.32)

We can the write the radius R and the torus volume directly in terms of physical pa-
rameters as

R2 = α′Ñ5

√

1 + e2Φc2
2, vol(T4) =

e2Φ

1 + e2Φc2
2

Ñ1

Ñ5

. (5.33)
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5.4 The F1/NS5 system with a RR scalar and four form

We finally apply T duality transformations along directions x6 and x7. We then obtain
the metric

ds2 =

√

fϕfψ

f1f5

(

−dζ2 + dξ2
)

+
√

fϕfψ
(

dρ2 + ρ2ds2
S3

)

+

√

√

√

√

fψ
fϕ

(

dx2
6 + dx2

7 + dx2
8 + dx2

9

)

.

(5.34)

The NSNS field strength remains the same as in the previous case,

H = cosϕ cosψK̃3 − sinϕ sinψK3. (5.35)

The turned on modulus is encoded in the RR scalar, which takes the form

C0 = c0 − 1

2

ν5 − ν1

νϕ

sin 2ϕ

fϕ
, (5.36)

where
c0 = −ν1ν5

νϕν̃
sin(ϕ+ ψ). (5.37)

Also the RR four-form potential is turned on

C4 =
(

−c0 +
ν5 − ν1

νϕ

ν5 cos3 ϕ sinψ − ν1 sin3 ϕ cosψ

fψ

)

e6 ∧ e7 ∧ e8 ∧ e9. (5.38)

Finally, the RR three-form field strength is given by

F3 =
f5

fϕ
cosϕ cosψK3 +

f1

fψ
sinϕ cosψK̃3. (5.39)

While this solution has several non-vanishing RR field strengths, all the D brane charges
are zero. The F1 and NS5 charges are the same as in equations (5.29) and (5.28).

Near-horizon geometry. In the near-horizon limit, the AdS3 and S3 radii are given
by

R2 = α′√ν1ν5 = α′Ñ5

√

√

√

√1 +
Ñ1

Ñ5

sin2(ϕ+ ψ), (5.40)

and the dilaton and torus volume by

eΦ =
ν2
ϕ

ν1ν5
, vol(T4) =

νϕ
νψ
. (5.41)

The RR scalar and four form potential are constant in the near-horizon limit,

C0 = c0, C4 = −c0e
6 ∧ e7 ∧ e8 ∧ e9, (5.42)

where c0 is defined in equation (5.37). In terms of this parameter we can write

R2 = α′Ñ5

√

1 + e2Φc2
0, vol(T4) =

e2Φ

1 + e2Φc2
0

Ñ1

Ñ5

. (5.43)
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5.5 The D1/D5 system with RR scalar and four form

We can finally make an S duality transformation to get back to a D1/D5 background
with a RR scalar and four-form potential. The resulting metric takes the form

ds2 =
1

ν̃

√

f̃ fψ

f1f5
(−dζ2 + dξ2) +

√

f̃ fψ

ν̃
(dρ2 + ρ2ds2

S3)

+
1

ν̃

√

√

√

√

f̃

fψ
(dx2

6 + dx2
7 + dx2

8 + dx2
9),

(5.44)

where ν̃ was introduced in (5.18) and

f̃ = ν2
5 cos2 ψf1 + ν2

1 sin2 ψf5. (5.45)

The dilaton and the T4 volume are now given by

eΦ =
f̃√
f1f5ν̃2

, vol(T4) =
f̃

fψν̃2
. (5.46)

The background is supported by the RR three-form

F3 =
ν̃

νψ

fψ

f1f5f̃
df̃ ∧ dζ ∧ ξ + 2α′ν̃ΩS3 . (5.47)

There is furthermore a B field

B =
(f−1

1 − f−1
5 )r2 sin(2ψ)

2α′ν̃
dζ ∧ dξ, (5.48)

a RR scalar

C0 = c0 +
r2ν̃2(f1 − f5) sin(2ψ)

2α′νψf̃
, (5.49)

where

c0 =
ν̃

νψ
sin(ϕ+ ψ), (5.50)

and a RR four form

C4 = B∧C2+
(

c0 +
r2ν̃(f1 − f5)(ν5 sinϕ cos3 ψ − ν1 cosϕ sin3 ψ)

α′νψf̃

)

e6 ∧e7 ∧e8 ∧e9. (5.51)

The non-vanishing charges of the background are the D5 and D1 charges, which take the
same values as in equations (5.16) and (5.17)

Near-horizon geometry. In the near-horizon limit the AdS3 and S3 radii, the dilaton
and the T4 volume are given by

R2 =
α′νψ

√
ν1ν5

ν̃
= α′eΦÑ5, eΦ =

√
ν1ν5νψ
ν̃2

, vol(T4) =
ν1ν5

ν̃2
=
Ñ1

Ñ5

. (5.52)

Note that both the radius and the torus volume are independent of the modulus. The
RR scalar and four form are given by

C0 = c0, C4 = c0 e
6 ∧ e7 ∧ e8 ∧ e9, (5.53)

where c0 is defined in (5.50).
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6 Conclusions

In this paper we have determined how the energies of closed perturbative strings on
AdS3 ×S3 ×T4 with zero winding and momentum on the torus depend on the 20 moduli
of the string theory. We focused on backgrounds which are near-horizon limits of D1/D5-
and F1/NS5-branes and found that in both cases only four of the 20 moduli have a non-
trivial effect on the Green-Schwarz action, and as a result have an effect on the energies
of H(0,0) strings.

In the near-horizon limit of D1/D5-branes one of the consequential moduli is the
closed string coupling constant whose only effect (at small gs) is to change the radius
of curvature R. The remaining three consequential moduli come from the self-dual part
of the NSNS two-form. When B+ 6= 0, the GS action involves couplings to the RR
five-form field strength, in addition to the three form which supports the geometry. We
showed that this new action is TrT-dual to the original action with B+ = 0, and that
closed strings in the B+ 6= 0 background have the same energies as strings in the B+ = 0
background with twisted boundary conditions (3.18). The twisting is proportional to
the amount of winding and momentum on T4 (as well as to B+), and so in the case
of H(0,0) strings the only change to the energies comes from a change in the radius of
curvature (1.1).

In the near-horizon limit of F1/NS5-branes, the four consequential moduli are the
RR scalar C0 and self-dual part of the two-form C+

2 . The GS action in a background
with a general combination of these moduli turned on is TrT-dual to the GS action with
just C0 turned on. As a result, for the H(0,0) spectrum we may investigate the effect of
just the C0 modulus: turning on the other RR moduli is encoded into a change in the
radius of curvature. The GS action depends on gauge-invariant RR field strengths

Fp+1 = dCp − Cp−2 ∧H. (6.1)

As a result, a constant C0 in the AdS3 geometry supported by NSNS flux induces a
RR three-form flux, and the GS action is the same as the so-called mixed flux AdS3

backgrounds [12–14]. The interpretation is however very different. The mixed-flux back-
grounds correspond to the near-horizon limit of (p, q)-strings and 5-branes, while the
background we investigated in this paper is a marginal deformation of the pure NSNS-
flux background, and carries only F1 and NS5 charges. When C0 vanishes, the action
is the GS analogue of the Neveu-Schwarz-Ramond theory considered by Maldacena and
Ooguri [15]. With general RR moduli turned on the radius of curvature is

R2 = α′k
√

1 + g2
sc

2 where c2 = C2
0 + 1

2
(C+

2 )2. (6.2)

Integrable methods have provided exact-in-R results for determining the energies of
H(0,0) states at small gs [28,36,37]. In particular, in the near horizon limit of the D1/D5-
brane theory, the exact-in-R 2-to-2 worldsheet S matrix is fixed by symmetries alone [19,
29] at the point in moduli space given in equation (2.2).23 A posteriori the S matrix

23More accurately, a number of so-called dressing factors are not fixed by symmetries alone, but can
be found using unitarity and crossing symmetry [38] of the theory [11, 18, 30]. In the mixed flux case,
the dressing factors are currently only known at the one-loop level [39].
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turns out to satisfy the Yang-Baxter equation, and so the complete worldsheet scattering
problem reduces to combinations of pairwise scattering described by the S matrix [19,29].
The exact-in-R H(0,0) spectrum can then be obtained using Bethe Ansatz methods at
small gs. It consists of the BMN vacuum [32], on top of which magnon-like operators act
to create excited states. The multiplicities of these creation operators is determined by
the BMN spectrum [32]. Each magnon has mass m = 0, 1 or −1 and carries a momentum
p, whose value is determined as a solution of the Bethe Equations [11, 18]. The energy
of magnon is fixed through a p-dependent shortening condition [29, 40]

E(p) =

√

m2 + 4h2(R) sin2
(

p
2

)

, (6.3)

and the energy of the state is given by the sum of the energies of the individual magnons.24

R enters the above dispersion relation through the function h(R), whose explicit form
is not fixed by integrability, much like is the case in AdS4 × CP3 [44]. As in higher-
dimensional examples of integrable holography, h determines the strength of the inte-
grable interactions and at large R

h(R) =
R2

2π
+ . . . . (6.4)

Determining h, perhaps along the lines used in AdS4 × CP3 [45], remains an important
problem.25 The analysis carried out in section 3, shows that the world-sheet theory
continues to be integrable across the 20 dimensional moduli space. The four consequential
moduli modify the integrable structure of the H(0,0) spectrum in a minimal way: they
just changing the value of R (1.1), which changes the value of h(R). Since the BEs are
valid for all values of h, we retain complete control over the spectrum across the whole
moduli space as longs as gs is small. For example, in [33], the half-BPS spectrum of the
theory was found and shown to match the supergravity results of [48]. The derivation
in [33] is exact in R, and combined with the present results, proves that the half-BPS
spectrum does not change as we move around moduli space, in agreement with the
non-renormalization theorem of [49].

Integrable methods have also been used to find the H(0,0) spectrum in mixed-flux back-
grounds [12–14, 39].26 However, to date it was not possible to study the pure F1/NS5
near-horizon geometry, because the off-shell supersymmetry algebra is not centrally ex-
tended in that case [14], and these central extensions are crucial in fixing the S matrix
from symmetries [51]. However, this obstacle occurs only at the point in moduli space
given in equation (2.4). As we showed in section 4, when the RR moduli are non-zero the
GS action becomes equivalent to the GS mixed-flux action, for which the central exten-
sions are again non-zero.27 We can therefore use the exact-in-R results of the mixed-flux

24Incorporating wrapping effects [41] into this construction remains to be fully understood [42], but
it appears likely that this will be possible [43].

25Perturbative world-sheet corrections to the dispersion relation in AdS3 × S3 × T4 and AdS3 × S3 ×
S3 × S1 were calculated in [46, 47].

26Semi-classical strings in such backgrounds have also been studied in [50].
27It is worth noting that turning on such RR moduli is expected to desingularise the dual CFT2 [10].
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background directly, upon re-expressing the parameters as in equation (4.9). The spec-
trum again consists of BMN magnon creation operators, but now with the dispersion
relation [13, 14, 52]

E(p) =

√

(

m+ kp
2π

)2
+ 4h2(R) sin2

(

p
2

)

, (6.5)

where k is the WZW level, the AdS3 radius is given in equation (6.2) and at large R, we
have

h(R) = −gsck

2π
+ . . . . (6.6)

We arrive at a nice picture: the near-horizon F1/NS5-brane worldsheet theory is in-
tegrable with the strength of the integrable interactions governed by ck, and the free
point corresponding to the GS version of the WZW model solved by [15]. By analogy
with higher-dimensional holography, we may think of ck as

√
λ, the analogue of the ’t

Hooft coupling constant, which should lead to a novel planar limit for the near-horizon
F1/NS5-brane theory. We intend to return to a more detailed investigation of this in the
near future.

It is worth emphasizing that both in the D1/D5 and F1/NS5 backgrounds, our
arguments show that the S matrix and hence the BEs are the same as the ones ob-
tained in [19, 29] and [14] respectively. The dependence on the moduli is contained
entirely within the function h that enters the dispersion relation and the definition of
the Zhukovsky variables.

Given the exact-in-R nature of the integrable holographic methods now available
across the whole moduli space, we believe the spectrum of the H(0,0) sector is an ideal
tool for investigating more precisely the relationship between strings on AdS3 and its
CFT2 dual. It is for example striking that the dimensions of SymN states with zero
winding and momentum also depend only on the four moduli of the Z2-twisted sector,
just as our H(0,0) states do. Nonetheless, as the recent findings for the WZW theory at
k = 1 suggest [34], the exact relationship to the SymN orbifold most likely needs to be
revisited, and the H(0,0) sector contains a wealth of non-protected information with which
to test any such conjectures. It seems plausible that the more complete holographic dual
will have to incorporate aspects of an effective Higgs branch CFT [7], where integrability
has been found [53].

We also hope to extend the analysis carried out here to strings on AdS3 × S3 ×
S3 × S1 backgrounds, since these too are known to be governed by integrable world-
sheet theories [27, 36, 46, 54–56]. The moduli space is much smaller here [57], and some
conjectures for the CFT2 dual also exist [57, 58].
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A Supergravity

A.1 Conventions

We define Hodge duality by

∗ (ea1 ∧ · · · ∧ eak) =
1

(d− k)!
ǫa1...ak

bk+1...bd
ebk+1 ∧ · · · ∧ ebd, (A.1)

where
ǫ0123456789 = +1. (A.2)

For AdS3 we use the coordinate t, z1 and z2 with metric

ds2
AdS3

= −
(

1 + |z|2

4

1 − |z|2

4

)2

dt2 +

(

1

1 − |z|2

4

)2

|dz|2, (A.3)

and for S3 we use y3, y4 and φ, with the metric

ds2
S3 =

(

1 − |y|2

4

1 + |y|2

4

)2

dφ2 +

(

1

1 + |y|2

4

)2

|dy|2. (A.4)

The corresponding unit volume forms are given by

ΩAdS3
=

1 + |z|2

4
(

1 − |z|2

4

)3 dt ∧ dz1 ∧ dz2, ΩS3
=

1 − |y|2

4
(

1 + |y|2

4

)3 dy3 ∧ dy4 ∧ dφ. (A.5)

It is also useful to introduce the two forms

ωAdS3
=

1

2

1
(

1 − |z|2

4

)2 dt ∧ (z2dz1 − z1dz2),

ωS3 =
1

2

1
(

1 + |y|2

4

)2 dφ ∧ (y4dy3 − y3dy4),
(A.6)

which are define so that locally

ΩAdS3
= dωAdS3

, ΩS3 = dωS3. (A.7)
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A.2 IIB supergravity

The action of IIB supergravity is given by28

SIIB =
1

2κ2
0

∫√−g
(

e−2Φ
(

R + 4(∂Φ)2 − 1
12
H2
)

− 1
2

(

F 2
1 + 1

3!
F 2

3 + 1
2 5!
F 2

5

)

)

− 1

4κ2
0

∫

C4 ∧H ∧ F3,
(A.8)

where the gauge invariant field strengths are given in terms of gauge potentials by

H = dB, F3 = dC2 − C0H, F7 = dC6 − C4 ∧H,

F1 = dC0, F5 = dC4 − C2 ∧H, F9 = dC8 − C6 ∧H,
(A.9)

and satisfy
∗ F1 = F9, ∗F3 = −F7, ∗F5 = F5. (A.10)

The RR field strengths satisfy the Bianchi identities and equations of motions29

dF1 = 0, dF3 + F1 ∧H = 0, dF5 + F3 ∧H = 0,

dF7 + F5 ∧H = 0, dF9 + F7 ∧H = 0.
(A.11)

The Bianchi identity and equation of motion for the NSNS three form H are given by

dH = 0, d
(

e−2Φ ∗H
)

− F1 ∧ ∗F3 − F3 ∧ F5 = 0. (A.12)

The equations of motion for the metric gµν are given by

Rab−2∇a∂bΦ+
1

2
|H|2ab+

1

2
e2Φ

(

|F1|2ab+ |F3|2ab+ 1
2
|F5|2ab− 1

2
ηab
(

|F1|2 + |F3|2
)

)

= 0, (A.13)

where the symmetric contractions of the fields strengths are given, for example, by

|H|2ab = 〈iaH, ibH〉 = − ∗ (iaH ∧ ∗ibH). (A.14)

The equation of motion of the dilaton reads

d ∗ dΦ − 2|dΦ|2 + 1
2
|H|2 − e2Φ

(

|F1|2 + 1
2
|F3|2

)

= 0. (A.15)

From the equations of motion and Bianchi identities we define the conserved charges
carried by Dp and NS5 branes as well as F1 strings. For example, the D3 charges is
given by

QD3 =
1

2κ2
0

∫

M⊥

dF5 + F3 ∧H, (A.16)

where M⊥ is transverse to the branes. This charge is local and quantised, but is only
invariant under small gauge transformations [20]. By partially integrating this in the
radial direction away from the branes, this can be rewritten as an integral over a surface
∂M⊥ enclosing the branes. The exact form of the integrand will then depend on the
exact form of the involved field strengths.

28We follow the conventions of [59].
29Note that the Bianchi identity for Fn is the same as the equation of motion for ∗Fn.
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A.3 T duality

If we make a T-duality transformation along the direction z then the NSNS fields trans-
form as

B̃µz = −gzµ
gzz

, B̃µν = Bµν +
2

gzz
Bz[µgν]z, Φ̃ = Φ − 1

2
log gzz,

g̃zz =
1

gzz
, g̃µz = −Bµz

gzz
, g̃µν = gµν − 1

gzz

(

gµzgνz − BµzBνz

)

,

(A.17)

and the RR fields transform as

C̃(n)
µ1···µn−1z

= C(n−1)
µ1···µn−1

− (−1)n
n− 1

gzz
C

(n−1)
z[µ1···µn−2

gµn−1]z,

C̃(n)
µ1···µn

= C(n+1)
µ1···µnz − nC

(n−1)
[µ1···µn−1

Bµn]z − (−1)n
n(n − 1)

gzz
C

(n−1)
z[µ1···µn−2

Bµn−1|z|gµn]z,

(A.18)

where we have used a superscript to indicate the degree of the various forms.

B General AdS3 × S3 × T4 backgrounds

In this appendix we will write down two general AdS3 × S3 × T4 type IIB supergravity
backgrounds, with the metric given by

ds2 = R2
(

ds2
AdS3

+ dsS3

)

+ gijdx
idxj. (B.1)

We will focus on two special cases: backgrounds carrying only the RR charges of the
D1/D5 system, and hence supported by a RR three form F3 and its dual F7, and back-
grounds carrying F1 and NS5 charges, and thus sourcing the NSNS field strength H , and
its dual.

There are a number of fields we can turn on that are compatible with the isometries
of the above metric:

• a constant B field on T4,
• a constant two-form potential C2 on T4,
• the RR scalar C0,
• a constant dilaton Φ,
• a RR four-form potential C4 on T4.

In the following two subsections we will write down general solutions with these fields
turned on.

B.1 RR backgrounds

Let us start by considering the case of backgrounds supported by RR flux. Imposing
the equations of motion, as well as demanding the absence of D3 charges as well as any
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NSNS charges, we find that the dilaton is an arbitrary constant, that the constant B
field is self dual

B = b67

(

e6 ∧ e7 + e8 ∧ e9
)

+ b68

(

e6 ∧ e8 − e7 ∧ e9
)

+ b69

(

e6 ∧ e9 + e7 ∧ e8
)

, (B.2)

and that the RR potentials are given by

C0 = c0, C8 = 0,

C2 = f
(

ωAdS3
+ ωS3

)

+ 1
2
cij e

i ∧ ej

C4 = 1
2
f
(

ωAdS3
+ ωS3

)

∧ B + 1
2
C2 ∧B + c0 e

6 ∧ e7 ∧ e8 ∧ e9,

C6 = −f
(

ωAdS3
+ ωS3

)

∧ e6 ∧ e7 ∧ e8 ∧ e9,

(B.3)

with cji = −cij . This corresponds to the field strengths

F1 = 0, F9 = 0

F3 = f
(

ΩAdS3
+ ΩS3

)

, F5 = f
(

ΩAdS3
+ ΩS3

)

∧ B,

F7 = −f
(

ΩAdS3
+ ΩS3

)

∧ e6 ∧ e7 ∧ e8 ∧ e9.

(B.4)

This results in a solution to the IIB supergravity equations of motion, provided the radius
of AdS3 and S3 is related to the other parameters by

R4 = 1
4
e2Φf 2

(

1 + b2
67 + b2

68 + b2
69

)

. (B.5)

This solution includes a number of free parameters:

• the metric of T4 – 10 parameters,
• the two-form potential C2 on T4 – 6 parameters,
• the self-dual B field – 3 parameters,
• the dilaton Φ – 1 parameter,
• one linear combination of the RR potentials C0 and C4 – 1 parameter,
• the coefficient f of the RR three-form field strength F3 – 1 parameter.

The last parameter, the coefficient f in front of F3, gives the radius of AdS3 and S3.
This leaves us with 21 parameters – one more than the expected number of moduli in
the D1/D5 system. The reason for this is that the total volume of T4 is fixed by the
attractor mechanism when the AdS3 × S3 × T4 geometry is obtained in the near-horizon
limit of the brane system. To find the volume of T4 in directly in the above supergravity
solution, we need to impose flux quantisation of the field strengths F3 and F7. This gives
us two additional constraints. One such constraint fixes f , and hence the radius R, in
terms of the fluxes, and the second constraint determines the volume of T4.

Note that of the 21 remaining parameters, only the self-dual B field appears in the
expressions for the field strengths. The Green-Schwarz string does not couple directly to
the gauge potentials, but only to the gauge invariant field strengths.30 Hence, the only
moduli the closed string spectrum in the D1/D5 system is sensitive to originates in the
self-dual B field.

30From (A.9) we see that for H = 0 the gauge invariant field strengths only depend on the derivatives
of the gauge potentials.
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B.2 NSNS backgrounds

Let us now consider backgrounds that only carry F1 and NS5 charges. Again we impose
the equations of motion and Bianchi identities, as well as the vanishing of all D-brane
charges. We then find that the dilaton is constant and that the RR potentials are given
by

C0 = c0, C4 = −c0e
6 ∧ e7 ∧ e8 ∧ e9,

C2 = c67(e6 ∧ e7 + e8 ∧ e9) + c68(e
6 ∧ e8 − e7 ∧ e9) + c69(e6 ∧ e9 + e7 ∧ e8),

(B.6)

while the B field is given by

B = h
(

ωAdS3
+ ωS3

)

+ 1
2
bij e

i ∧ ej, (B.7)

with bji = −bij . The corresponding field strengths are given by

H = h(ΩAdS3
+ ΩS3), (B.8)

and
F1 = 0, F9 = 0,

F3 = −c0h(ΩAdS3
+ ΩS3),

F5 = −h(ΩAdS3
+ ΩS3) ∧ C2,

F7 = +c0h(ΩAdS3
+ ΩS3) ∧ e6 ∧ e7 ∧ e8 ∧ e9.

(B.9)

The radius of AdS3 and S3 is now given by

R2 = 1
4
h2
(

1 + e2Φ(c2
0 + c2

67 + c2
68 + c2

69)
)

. (B.10)

Again, this solution has 22 free parameters:

• the metric of T4 – 10 parameters,
• the self-dual two-form potential C2 – 3 parameters,
• the B field – 6 parameters,
• the dilaton Φ – 1 parameter,
• one linear combination of the RR potentials C0 and C4 – 1 parameter,
• the coefficient h of the NSNS three-form field strength H – 1 parameter.

As in the previous case, imposing charge quantisation lets us fix the coefficient h, and
hence the radius, as well as the volume of T4 in terms of the brane charges of the
background. We are then left with the 20 expected moduli.

C The TrT transformed Green-Schwarz string

In this appendix we write down the expressions for the terms in the gauge-fixed Green-
Schwarz string after two TrT transformations with parameters ϕ and ψ. In general, the
Lagrangian can be written as

L = −1

2

(

γαβ∂αx
i∂βx

jGij − ǫαβ∂αx
i∂βx

jBij + 2∂αx
i
(

γαβUβ,i − ǫαβVβ,i
)

+ Lrest

)

. (C.1)
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We will work to quadratic order in fermions and decompose the coefficients in the La-
grangian as

Gij = G
(b)
ij +G

(f)
ij , Bij = B

(b)
ij +B

(f)
ij , Uα,i = U

(b)
α,i + U

(f)
α,i , Vα,i = V

(b)
α,i + V

(f)
α,i , (C.2)

where, e.g., G
(b)
ij is purely bosonic while G

(f)
ij is quadratic in fermions. For concreteness we

will assume that there are four U(1) directions, which are parametrised with x6, . . . , x9.
We further set the volume of these four directions to be equal and assume that there is
no B field and that the metric is diagonal. The bosonic background fields then take the
form

G
(b)
ij = δij

√

µ1

µ5
, B

(b)
ij = 0, U

(b)
α,i = 0, V

(b)
α,i = 0. (C.3)

Furthermore, we set

G
(f)
ij = δijgf

√

µ1

µ5

, B
(f)
89 = B

(f)
67 , B

(f)
79 = −B(f)

68 , B
(f)
78 = B

(f)
69 . (C.4)

Performing the two TrT transformations and keeping only terms that are at most
quadratic in fermions, we find that the bosonic part of the resulting background is given
by

G̃
(b)
66 = G̃

(b)
77 =

√
µ1µ5

µϕ
, B̃

(b)
67 =

µ1 − µ5

µϕ
sinϕ cosϕ,

G̃
(b)
88 = G̃

(b)
99 =

√
µ1µ5

µψ
, B̃

(b)
89 =

µ1 − µ5

µψ
sinψ cosψ.

(C.5)
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The terms in the transformed background that are quadratic in fermions are given by

G̃
(f)
66 = G̃

(f)
77 =

√
µ1µ5

µ2
ϕ

(

(µ5 cos2 ϕ − µ1 sin2 ϕ)gf − 2µ5 cosϕ sinϕB
(f)
67

)

,

G̃
(f)
88 = G̃

(f)
99 =

√
µ1µ5

µ2
ψ

(

(µ5 cos2 ψ − µ1 sin2 ψ)gf − 2µ5 cosψ sinψB
(f)
67

)

,

−G̃(f)
79 = G̃

(f)
68 =

√
µ1µ5

µϕµψ
µ5 sin(ϕ− ψ)B

(f)
69 ,

G̃
(f)
78 = G̃

(f)
69 =

√
µ1µ5

µϕµψ
µ5 sin(ϕ− ψ)B

(f)
68 ,

B̃
(f)
67 =

µ5

µ2
ϕ

(

(µ5 cos2 ϕ − µ1 sin2 ϕ)B
(f)
67 + 2µ1 cosϕ sinϕ gf

)

B̃
(f)
89 =

µ5

µ2
ψ

(

(µ5 cos2 ψ − µ1 sin2 ψ)B
(f)
67 + 2µ1 cosψ sinψ gf

)

,

−B̃(f)
79 = B̃

(f)
68 =

µ5

µϕµψ
(µ5 cosϕ cosψ + µ1 sinϕ sinψ)B

(f)
68 ,

B̃
(f)
78 = B̃

(f)
69 =

µ5

µϕµψ
(µ5 cosϕ cosψ + µ1 sinϕ sinψ)B

(f)
69 ,

Ũ
(f)
α,6 =

µ5

µϕ
cosϕU

(f)
α,6 +

√
µ1µ5

µϕ
sinϕV

(f)
α,7 ,

Ũ
(f)
α,7 =

µ5

µϕ
cosϕU

(f)
α,7 −

√
µ1µ5

µϕ
sinϕV

(f)
α,6 ,

Ũ
(f)
α,8 =

µ5

µψ
cosψ U

(f)
α,8 +

√
µ1µ5

µψ
sinψ V

(f)
α,8 ,

Ũ
(f)
α,9 =

µ5

µψ
cosψ U

(f)
α,9 −

√
µ1µ5

µψ
sinψ V

(f)
α,9 ,

Ṽ
(f)
α,6 =

µ5

µϕ
cosϕV

(f)
α,6 +

√
µ1µ5

µϕ
sinϕU

(f)
α,7 ,

Ṽ
(f)
α,7 =

µ5

µϕ
cosϕV

(f)
α,7 −

√
µ1µ5

µϕ
sinϕU

(f)
α,6 ,

Ṽ
(f)
α,8 =

µ5

µψ
cosψ V

(f)
α,8 +

√
µ1µ5

µψ
sinψ U

(f)
α,8 ,

Ṽ
(f)
α,9 =

µ5

µψ
cosψ V

(f)
α,9 −

√
µ1µ5

µψ
sinψ U

(f)
α,9 .

(C.6)
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