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Abstract
Emotions play an important role in human communication, interaction, and decision making processes. Therefore, consid-
erable efforts have been made towards the automatic identification of human emotions, in particular electroencephalogram 
(EEG) signals and Data Mining (DM) techniques have been then used to create models recognizing the affective states of 
users. However, most previous works have used clinical grade EEG systems with at least 32 electrodes. These systems are 
expensive and cumbersome, and therefore unsuitable for usage during normal daily activities. Smaller EEG headsets such as 
the Emotiv are now available and can be used during daily activities. This paper investigates the accuracy and applicability of 
previous affective recognition methods on data collected with an Emotiv headset while participants used a personal computer 
to fulfill several tasks. Several features were extracted from four channels only (AF3, AF4, F3 and F4 in accordance with the 
10–20 system). Both Support Vector Machine and Naïve Bayes were used for emotion classification. Results demonstrate 
that such methods can be used to accurately detect emotions using a small EEG headset during a normal daily activity.

Keywords Affective recognition · Statistical features · Affective computing · Electroencephalogram (EEG) · Data Mining 
(DM)

1 Introduction

Emotions are defined as a set of stimuli that any person feels 
when facing different past or present events. In this regard, 
emotions are also considered as the body’s responses to such 
stimuli: physiological excitement, expressive conduct and 
conscious experience as stated by Barrett et al. (2016). Emo-
tions play an important role in human interactions and deci-
sion making. Therefore, the ability to automatically detect 
emotions is important for any artificial system that interacts 
with humans. Consequently, in order to progress towards 
a more purposeful a beneficial form of human–machine 
interaction.

Data mining (DM) and machine learning techniques 
can be used to create models for automatic affective rec-
ognition. DM-based affective recognition may be use-
ful for identifying specific behaviors and attitudes evi-
denced by people, identifying lifestyles and supporting 
decision-making in both medicine and education fields. 
Several authors like Koelstra et al. (2012), Soleymani 
et al. (2012), Liu and Sourina (2013), Wu et al. (2016), 
Chatchinarat et  al. (2017), Katsigiannis and Ramzan 
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(2017), Shu and Wang (2017), Zhong and Jianhua (2017) 
and Menezes et al. (2017) have proposed DM techniques 
for affective recognition.

DM methods are dependent on good quality datasets 
for training models. In order to contribute to the develop-
ment of good affective recognition algorithms, benchmark 
datasets have been created and are maintained by differ-
ent research teams (Parsons and Rizzo 2008; Koelstra 
et al. 2012; Soleymani et al. 2012; Liu and Sourina 2013; 
Katsigiannis and Ramzan 2017). A summary of these 
datasets is presented in Table 1. Most often, benchmark 
datasets make use of 32 electrodes placed in accordance 
with the 10–20 system (Abadi et al. 2015). In some cases, 
more portable devices like the Emotiv (Wu et al. 2016) 
are used. In order to evoke emotional stimuli, participants 
are often shown videos or images and then asked to rate 
their emotional response in terms of valence and arousal 
with the help of a self-assessment maniquin. Such studies 
aim at acquiring high quality data with reliable ground 
truth; but are not representative of normal daily activities. 
Considering the aforementioned facts, our study aims to 
evaluate if current affective recognition models and strat-
egies can be applied to data collected in less controlled 
experiments that simulate activities typical of daily liv-
ing, in particular, using a personal computer to complete 
several common computer-based tasks. Feature extration 
techniques as well as machine learning models are used to 
create an affective recognition model. Model performace 
is evaluated based on self-reported ground truth.

The remainder of this paper is organized as follows: 
Sect. 2 introduces previous related work on emotion rec-
ognition. Methods used in the present work are explained 
in Sect. 3. In Sect. 4, the results are shown and analyzed. 
Finally, Sect. 5 presents conclusions.

2  Background

2.1  Benchmark datasets

Currently, various input modalities exist that can be utilized 
to acquire information about users and their emotions. More 
commonly, audiovisual communication, such as eye gaze 
tracking, facial expressions, body movement detection, and 
speech and auditory analysis may be employed as input 
modalities. Furthermore, physiological measurements using 
sensor signals, such as EEG, galvanic skin response, and 
electrocardiogram can also be utilized. However, the use of 
EEG as an input modality has a number of advantages that 
make it potentially suitable for use in real-life tasks includ-
ing its non-invasive nature and relative tolerance to move-
ment. EEG can be used as a standalone modality as well 
as combined with other biometric sensors. Considering the 
reported literature, many efforts have been made by different 
authors to contribute to the affective recognition field and 
multiple datasets have been built to be effectively used when 
creating new classifiers.

The creation of accurate machine learning models from 
EEG data depends on the quality of the data that is used. 
In order to further develop in this field, several researchers 
have created benchmark databases. Koelstra et al. (2012) 
proposed a dataset called “DEAP”, which consists of EEG 
signals and peripheral physiological signals derived from 
32 participants. These signals were recorded while the 
applicants viewed 40 1-min musical videoclips. In this 
work, a high positive correlation was found between liking/
dominance and valence since people like music that gives 
empowerment sensations. On the other hand, a moderate 
positive correlation was detected between liking/dominance 
and arousal (Koelstra et al. 2012).

A multimodal database called MANHOB-HCI, which 
is used for recognizing human affect and implicit labeling, 

Table 1  Datasets for affective recognition

Database Description

DEAP (Koelstra et al. 2012) 32 participants with each one seeing 40 one-minute videos and the use of electrodes in different 
brain regions for data collection

MAHNOB-HCI (Soleymani et al. 2012) 27 people with each one initially seeing 20 videos. Then, a data-collection process took place 
with the participants observing brief video clips and images and using electrodes in different 
brain regions

Liu and Sourina (2013) 14 participants whose data were stored and used for affective recognition. In this experiment, 
audio and visual stimulus were implemented and the data-collection process was conducted 
with the support of the Emotiv device

DECAF (Parsons and Rizzo, 2008) 30 participants with each one seeing 40 one-minute musical video segments and 36 movie clips 
which allows to compare EEG and MEG modalities as well as analyzing the people stimulus 
when listening to music. This is also used for affective recognition

DREAMER (Katsigiannis and Ramzan 2017) 23 participants and the integration of EEG and ECG signals
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was built by Soleymani et al. (2012). To do this, it was nec-
essary to record the responses to emotion stimuli aiming 
at identifying the emotions of 27 participants. The dataset 
gathers information on face poses, audio signals, eye gaze 
and peripheral physiological signals. The experimentation 
was comprised of two phases. First, the participants saw 
20 videos in order to detect their emotions through the use 
of excitement, valence, dominance, predictive ability and 
emotional keywords. In the second phase, the participants 
visualized short videos and images which were presented 
once with and without correct labeling. This was assessed 
in order to evidence their agreement or disagreement with 
the respective labeling. Here, the authors used a hidden 
Markov model for classifying the sequence of facial expres-
sions in accordance with the correction of the previously 
shown labels. Furthermore, the classification process was 
evaluated by applying cross-validation methods (Soleymani 
et al. 2012).

The use of EEG for affective recognition was also 
expressed by Liu and Sourina (2013) as, by using electroen-
cephalogram (EEG), is an aspect of interest for the research 
community. Therefore, the above-mentioned authors created 
a dataset for emotion classification using audio and visual 
stimulation during the experimentation process. The stimu-
lus is selected from the International Affective Digitized 
Sound Systsme (IADS) and the International Affective Pic-
ture System (IAPS) datasets. For dataset construction, the 
Emotiv device was employed, to collect the response of 14 
participants. The stimuli are classified by the participants 
considering the arousal, valence and dominance levels. In 
addition, the authors analyze the correlation degree between 
different EEG frequency bands and affect assessment. The 
approach proposed by the authors consists of two phases. 
Initially, there is an extraction process using a sliding win-
dow followed by a data classification algorithm applying 
Support Vector Machine (SVM). Finally, the presented 
method is able to recognize eight emotions: joy, surprise, 
satisfaction, protected, angry, frightened, unconcerned and 
sad. The best accuracy result for classification of 8 emotions 
is 53.7% by using four electrodes whilst, 87.02% is the best 
outcome when recognizing two emotions under the same 
number of electrodes (Liu and Sourina 2013).

DECAF, a multimodal database that allows researchers 
to de-codify the physiological user responses to multimedia 
content was presented by Abadi et al. (2015). Correspond-
ingly, the DECAF dataset contains brain signals that are 
obtained by using a Magnetoencephalogram (MEG) sen-
sor that requires low physical contact with the user’s scalp. 
Moreover, DECAF (Parsons and Rizzo 2008) contains emo-
tional implicit and explicit reactions from 30 participants 
seeing 40 segments of one-minute musical videoclips. This 
facilitates the comparisons between EEG and MEG modali-
ties. In addition to the MEG, the DECAF dataset, contains 

synchronized Near Infrared Reflectance (NIR) face videos, 
Horizontal Electro-Oculogram (HEOG), Electro-oculogram 
(OCG), Electrocardiogram (ECG) and peripheral physiolog-
ical responses of trapezoid electromyogram (TEMG).

Another multimodal database, DREAMER, comprising 
information on EEG and ECG signals from 23 people was 
provided by Katsigiannis et al. (2017). The stored informa-
tion corresponds to audiovisual stimulus where the affective 
state was analyzed and compared to valence, arousal and 
dominance. Every signal was collected by using portable 
devices and wearable sensors that allow the use of affective 
computing methods in day-to-day applications. The authors 
propose the use of Support Vector Machine (SVM) for affec-
tive recognition based on EGG and ECG (Katsigiannis and 
Ramzan 2017). Table 1 summarized the available databases 
that were created for affective recognition.

2.2  Related work

As stated by Chatchinarat et al. (2017), the affective recogni-
tion and classification based on EEG signals are widely stud-
ied because of their potential benefits for both healthcare and 
entertainment fields. In this regard, different methods can be 
used for the classification process; for instance, SMV may 
be combined with a decision tree approach to achieve better 
accuracy results compared to those reported in the literature.

In performing affective recognition from EEG signals, it 
is not common to consider multiple subjects and individual 
patterns for each subject simultaneously, as expressed by 
Wu et al. (2016). They presented a novel approach for affec-
tive recognition where subjects, or a set of them, are used 
as contributors of relevant information. In their work, five 
frequency attributes were extracted from each EEG signal. 
These parameters were selected by carrying out statistical 
tests. Finally, the proposed method evidenced that two three-
node Bayesian networks can be used to capture probability 
distribution functions for emotion labeling.

By contrast, Shu and Wang (2017) established that the 
dependence among multiple physiological signals is the 
cornerstone of multimodal affective recognition; however, 
it has not been exploited entirely. Consequently, this study 
proposed to use the Restricted Boltzmann Machine (RBM) 
for dependency modeling. Specifically, the RBM visible 
nodes represent the EEG and the peripheral physiological 
signals; hence, the links between visible and hidden nodes 
identify the intrinsic interlinkages among multiple signals. 
The authors applied SVM for affective recognition from the 
generated attributes.

Combining machine learning and DM approaches is 
considered by Zhong and Jianhua (2017) to be an interest-
ing proposal for research due to the use of physiological 
data such as EEG signals for affective recognition based 
on physiological data. Particularly, the classification models 
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can be learned from heterogeneous attributes. The set of 
subject-independent EEG features using transfer recursive 
feature elmination (T-RFE), which allows obtaining the sub-
set of optimal characteristics. The authors used DEAP as a 
data source in conjunction with the linear square support 
vector machine (LSSVM) as a base for selecting the EEG 
attributes.

Menezes et al. (2017) used the DEAP dataset for emotion 
classification from several features. Reasonable classifica-
tion accuracies for Valence and Arousal were obtained via 
calculating feature vectors based on statistical measure-
ments, band power from α, β, δ, and θ waves of the EEG 
signal.

Considering the reported literature, statistical methods 
have been widely used to design and develop smart tools 
for affective recognition as well as the identification and 
extraction of attributes. A statistical feature is a distinctive 
characteristic of a dataset obtained from different types of 
mathematical transformation (Barrios and Jiménez 2015). 
Particularly, it is used for supporting human emotion classifi-
cation due to the notorious difficulties identified when using 
bio-signals. The research findings suggest that, once the sig-
nals are pre-processed, brainwaves can be successfully char-
acterized using statistical features (Jerritta et al. 2011). This 
is useful when considering that a feature must demonstrate 
high stability in order to be accepted for clinical use (Lan 
et al. 2016). Algorithms based on statistical features have 
become the most used feature extraction techniques (Schaaff 
and Schultz 2009; Chai et al. 2010; Mampusti et al. 2011; 
Bastos-Filho et al. 2012) and several authors have attempted 
to find the attributes providing the highest affective recogni-
tion accuracy. Subasi (2007) used four statistical features to 
represent the time–frequency distribution of the EEG signals 
(diagnosis of epilepsy): Mean of absolute values of the coef-
ficients in each sub-band (1), average power of the wavelet 
coefficients in each sub-band (2), standard deviation of the 
coefficients in each sub-band (3) and ratio of the absolute 
mean values of adjacent sub-bands (4). Features (1) and (2) 
were then combined to denote the frequency distribution of 
the signal whilst (3) and (4) were employed to estimate the 
number of changes in the frequency distribution.

Murugappan et al. (2008a, b) proposed an affective recog-
nition system from EEG signals and computed three statisti-
cal features for classifying human emotions: energy, recours-
ing energy efficiency (REE) and root mean squares (RMS). 
Specifically, REE has efficiently clustered the emotions by 
achieving the performance goal (Murugappan et al. 2010). 
Meanwhile, Chai et al. (2010) proposed a statistics-based 
system for human emotion classification by using EEG. In 
this study, six statistical features were computed: means of 
the raw signals (1), standard deviation of the raw signals 
(2), means of the absolute values of the first differences of 
the raw signals (3) means of the absolute values of the first 

differences of the normalized signals (4) means of the abso-
lute values of the second differences of the raw signals (5) 
and the means of the absolute values of the second differ-
ences of the normalized signals (6). These statistics have 
been also used in Picard et al. (2001), Maaoui and Pruski 
(2010), Lan et al. (2014), Menezes et al. (2017) and Nugent 
et al. (2016). Particularly, Lan et al. (2014) found that the 
standard deviation and the mean of the absolute values of 
the second differences of the normalized EEG proved to 
be satisfactory regarding intra-class correlation coefficient 
(ICC). Furthermore, a combination of these measures, was 
employed. In this respect, the vector (3)–(5) produced the 
highest rate of correct classification (95%) and 12.68 s were 
consumed for training. However, 100% correct classifica-
tion was only achieved for the emotion “sadness”. In this 
sense, all the testing inputs for “sadness” were correctly 
identified as “sadness” Consequently, more work should be 
emphasized in augmenting the effectiveness of algorithms in 
recognizing a higher number of emotions as well as reduc-
ing the processing time required by the algorithm in pro-
ducing positive results. Another example can be found in 
Murugappan et al. (2009) who investigated the possibility 
of using visual and audiovisual stimuli for detecting human 
emotion by measuring EEG. Herein, two statistical features 
were extracted for each channel on alpha frequency band: 
energy and power.

Statistical features comprising the selected mean, median, 
standard deviation, skewness and kurtosis were employed 
by Islam et al. (2013) to represent the largest dispersion in 
different mental states and to help assess different human 
emotions. In this study, the skewness of EEG signals deter-
mined the peakedness in the state of relaxing, thought, mem-
ory, motor action, fear, pleasant state and enjoying music. 
In addition, it provided further information of the brain or 
cognitive functions in different frequency components.

When combined with other methods, statistical features 
can also provide very good results as stated by Rizon et al. 
(2008) who used four statistical measures (energy, normal-
ized energy, entropy and power) combined with “db4” wave-
let function. The results demonstrated that this technique 
performed well in classifying the emotions on an optimal set 
of channels proposed by the asymmetric ratio-based chan-
nel selection method. Also, Liu and Sourina (2014) inte-
grated statistical parameters with Fractal dimension features 
to improve accuracy and generate adequate computational 
time. The results evidenced that two emotions can be recog-
nized with the best average accuracy of 87.02% when using 
4 four electrodes.

Wang et al. (2011) concluded that the classification per-
formance using all statistical features is evidently better than 
those based on individual features under the same condi-
tions. In this regard, Kim and André (2008) investigated the 
potential of physiological signals as reliable channels for 
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affective recognition. Herein, the authors used extended Lin-
ear Discriminant Analysis (plDA) to classify four musical 
emotions (positive/high arousal, negative/high arousal, neg-
ative/low arousal, and positive/low arousal). An improved 
recognition accuracy of 95% and 70% for subject-depend-
ent and subject-independent classification, respectively, 
were achieved. Likewise, Vijayan et al. (2015) proposed a 
novel approach based on statistically weighed autoregres-
sive modeling of EEG for the classification of human emo-
tions. The algorithm was evidenced to be superior to other 
related techniques since it provided a classification accuracy 
of 94.097%. Also, it is useful to make the emotion clas-
sification process simpler. In this respect, Wang and Sou-
rina (2013) applied Principal Component Analysis (PCA) 
combined with the six measures proposed by Picard et al. 
(2001) in order to eliminate redundant information within 
the extracted statistical features, which may result in a reduc-
tion with respect to the initial number of features. Similarly, 
Atkinson and Campos (2016) used the minimum–Redun-
dancy–Maximum–Relevance (mRMR) method (Wu et al. 
2010; Liu et al. 2010) to select a relevant set of parameters 
so that further classification can be more accurate. It was 
demonstrated that mRMR outperformed other state-of-the-
art techniques.

As concluded by Jerritta et al. (2011), real-time affective 
recognition using physiological signals is still in its early 
stages of growth. As emotions are highly subjective, an over-
all framework for classifying all the basic emotions remains 
a challenge. Despite the studies conducted for this purpose, 
it is still necessary to develop efficient feature extraction 
algorithms using a different set of statistical parameters for 
improving the emotion classification rate. In addition, it was 
established that classification based on arousal and valence 
values proved to be rather interesting. Another finding is 
that there is no comparative study determining the statistical 
correlation between different affective states and the waves 
derived from EEG signals.

In light of these, the conducted literature review showed 
that the studies concentrated on the use of kurtosis, skewness 
and median are largely limited. Therefore, we implemented 
these parameters in this study in conjunction with other tra-
ditional measures (i.e. mean and standard deviation) in order 
to explore their effectiveness when classifying emotions and 
to subsequently provide features that can be used in realistic 
daily living scenarios.

3  Methods

3.1  Dataset preparation and analysis

The data-collection process included the following sens-
ing modalities: (1) depth camera (Intel Real-Sense 3D), (2) 

eye tracker (eye tribe tracker), (3) Emotiv EPOC headset 
to record EEG behavior during the task attempts, use (4) 
microphone to record participant voice while he/she imple-
mented the Talk Aloud Protocol (TAP). In this study, how-
ever, we focus on the analysis of the EEG signal only. The 
data collection study was undertaken at the Artificial Intel-
ligence Application Research Group (AIARG) lab at Ulster 
University, Belfast, UK. The resulting number of instances 
per participant np ∼ N[6680;5056] and the size of the final 
dataset was 140724 (including 132 features). The study was 
approved by the Ulster University Ethics Filter Committee 
(FCE 20160419 16.24). During the study participants were 
asked to perform four computer-based tasks using common 
computer software while seated at a desktop-based personal 
computer.

The set of four tasks with associated sub-tasks was as 
follows:

1. Basic operating system task (adjust desktop computer 
system):
a. Change Desktop background, desktop resolution, 

screen saver and, create/move/delete folders
b. Change regional settings, time zone, currency and 

add new language

2. Online shopping task find tablet PC online using pre-
ferred browser:
a. With a screen size equal to or greater than 7 inches 

and where the price is less than £50
b. In addition to (a), where the tablet has 16 GB storage 

and a camera equal to or greater than 5MP

3. Excel spread sheet tasks (manipulate the pre-populated 
spreadsheet):
a. Insert a new record into the spreadsheet, sort the 

names into ascending order and verify that the 
actions were applied

b. Calculate the average and create a line chart from 
the data

4. Game-based tasks: participants were asked to play Pac-
man (Deluxe Pacman 2) with two levels of difficulty:

For each task, a maximum time limit of two minutes was 
given, with the exception of the game-based task, which was 
limited to three minutes with an initial period of familiari-
zation prior to starting the task. Tasks were presented in a 
random sequence in order to eradicate bias.

Initially, each participant was given an information sheet 
describing the flow of the study, along with the equipment to 
be used. Following this, consent for participation was given 
(if agreed), and both Emotiv EPOC and Eye Tribe Tracker 
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setup and calibrated. The participant the commenced the 
first of the four selected tasks according to instructions 
given in an accompanying task sheet. Upon completion of 
a task, the task time and completion state were determined, 
and the participant was asked to self-report on his/her feel-
ings regarding the task using the Self-Assessment Manikin 
(Bradley and Lang 1994) shown in Fig. 1, in addition to 
annotating selected facial images acquired during the task. A 
minimum of three facial images captured during a task were 
chosen by the participant, whereby Valence and Arousal 
values from the range [1–9] were utilized in concert with 
the Self-Assessment Manikin to annotate the selected facial 
images. This self-reporting process was repeated after each 
of the four tasks. The information on perceived Valence and 
Arousal by each participant for each task will subsequently 
be used for further analysis.

All participants were either staff or students at Ulster Uni-
versity, however, due to the overarching focus of the study 
no demographic information was recorded. In addition, there 
was no pre-defined exclusion criteria, hence participant’s 
prior computer experience could vary from novice to expert. 
The subsequent dataset obtained includes information on the 
emotional states of 22 participants, leading to a self-reported 
Valence and Arousal values from the Self-Assessment Mani-
kin post-task, and a total of 304 instances (on average) of 
perceived Valence and Arousal from the selected facial 
images acquired during each task.

3.2  Support vector machine (SVM)

Commonly used to solve prediction and classification prob-
lems in an efficient way due to its automatic learning system. 
They are based in the statistic learning system developed 
by (Niedermeyer and Da Silva 1993), when a mathematic 
model is proposed for regression and classification problems 
(Parsons and Rizzo 2008).

Other authors mention that SVM is a margin classifier 
that gets trained by a dataset with feature vectors. SVM 

tries to find an optimal limit that separates two classes with 
different feature vectors with a maximal margin (distance 
between optimum hyperplane and the nearest vector). To 
make classification of an inseparable dataset, a nonlinear 
SVM projects a feature vector in a high dimensional space 
using a kernel function such as radial basis kernel function 
(Botella et al. 2004).

The construction of SVM is based on transforming or 
projecting a dataset in a given n dimension to higher dimen-
sion space applying a kernel function—kernel trick. From 
this new space created, the data is operated as a linear prob-
lem, solving it without considering the data dimensionality 
(Brahnam and Jain 2010).

Some advantages of SVM are: First, it has a solid math-
ematics foundation. Second, it has the concept of structural 
risk minimization (Hodges et al. 2001; Glantz et al. 2003), 
that translates into the minimization of the probability of 
a wrong classification on new examples. This case is very 
common when there are too few data for training. The third 
advantage relies on the availability of powerful tools and 
algorithms to find the solution in fast and efficiently (De la 
Hoz et al. 2014; Bekele et al. 2016).

3.3  Naïve Bayes

Bayesian networks are considered an alternative to classic 
expert systems oriented to decision making and prediction 
under uncertainty in probabilistic terms (Picard et al. 2004). 
In Bransford et al. (1999) and Ip et al. (2011), a structure 
composed of four levels is used. At the highest level would 
be a set of variables mapped by nodes and arrows that relate 
with influence terms. In the next level, you would find the 
levels or states, also known as state space that can take each 
of the model variables (Ontiveros-Hernández et al. 2013). 
In third place, you can find a set of conditional probability 
functions, one for each node, and represents the probability 
of occurrence of each state of the variable conditioned to 
possible values. At the lowest level, is a set of algorithms 

Fig. 1  Self-Assessment Manikin 
(SAM), used by participants 
to assess level of Valence and 
Arousal
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that would allow the network to recalculate the probabilities 
assigned to each of the levels when some evidence from the 
model is known.

4  Description of proposed methodology

4.1  Selection of EEG channels

Research has evidenced that the frontal lobe is key when 
measuring emotions. It has significant activity during the 
experience of emotions, affective reactions and emotion 
regulation (Konstantinidis et al. 2012). As a first experi-
ment and in order to continue the work in Menezes et al. 
(2017), we chose to use only the EEG signal from positions 
Af3, Af4, F3 and F4 (related to prefrontal cortex and frontal 
lobes), as seen in Fig. 2. These signals were acquired with 
an Emotiv EPOC headset. This selection also aims to study 
the effectiveness of a reduced number of electrodes to ana-
lyze affective states. This would provide a simpler and more 
user-friendly data acquisition for future use on the wild and 
in real-time situations.

4.2  Bandwave extraction

Parks–McClellan algorithm and Chebyshev Finite Impulse 
Response filter were applied to the EEG signal in order to 
obtain the brainwaves Delta (δ), Theta (θ), Alpha (α) and 
Beta (β). The frequency ranges to obtain each wave were 
as follows: Delta (δ) from 0.5 to 4 Hz; Theta (θ) from 4 to 

8 Hz; Alpha (α) from 8 to 12 Hz; and Beta (β) 12 to 30 Hz 
(Menezes et al. 2017).

4.3  Feature extraction

During the cleaning process, the signals were downsampled 
to 125 Hz and high-pass filtered with a cut-off frequency of 
2 Hz by using Matlab. Different kinds of features were then 
calculated from EEG signals. Here, statistical and power-
band parameters were considered. Such measures and the 
construction of feature vectors are further explained below. 
In this case, there is not any data mixing the four electrodes 
during the extraction of the characteristics.

4.3.1  Statistical features

Seven statistical parameters were calculated for each of the 
signals as follows. Let the data from the EEG headset be 
represented by X. This data includes four signals, one from 
each channel position ( AF3, AF4, F3, F4 according to the 
10–20 system). The signal from each channel was decom-
posed into four frequency bands: α, β, δ, and θ as explained 
above. For each participant, each observation corresponds 
to a task performed by the participant, so the data were seg-
mented according to the duration of each of the tasks. Xcp is 
defined as the nth (n = 1, ..., N). sample (in time) for task c 
obtained from the p channel position. Here, N represents the 
length of the task. Statistical features were computed over a 
window (± 2 s) encompassing the entire task. In addition, 
!xcp

 (refer to Eq. 1) and !xcp
 (refer to Eq. 2) are the mean and 

standard deviation of Xcp respectively, whilst the absolute 
average and deviation are ||

|
!xcp

|
|
|
 (refer to Eq. 3) and ||

|
!xcp

|
|
|
 

(refer to Eq. 4) correspondingly.

In an effort to provide better accuracy measures, this 
study additionally focuses on the use of median (refer to 

(1)!xcp
=

1

N

N∑

n= 1

Xcp(n)

(2)!xcp
=

(
1

N − 1

N∑

n= 1

(
Xcp(n)(−"x

)2

) 1∕2

(3)|
|
|
!xcp

|
|
|
=

1

N

N∑

n= 1

|
|
|
xcp(n)

|
|
|

(4)|
|
|
!xcp

|
|
|
=

(
1

N − 1

N∑

n= 1

(
|
|
|
Xcp(n)

|
|
|
− "xcp(n)

)2

) 1∕2

Fig. 2  Af3, Af4, F3 and F4 positions selected according to the 10–20 
system
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Eq. 5). Here, l is the lower class boundary of the median 
class; h denotes the size of the median class interval, f  is the 
frequency of a median class and fc represents the cumulative 
frequency preceding median class.

Other parameters of interest are skewness (refer to Eq. 6) 
and kurtosis (refer to Eq. 7). Particularly, the use of these 
features is largely limited in the reported literature. There-
fore, we decided to explore their effectiveness in this study. 
In this regard, these measures may correlate with having an 
emotion and subsequently complement the traditional fea-
tures (Eq. 1–4) proposed in other works.

Although studies have expressed that there is a strong 
correlation between brainwaves and different affective 
states (Lin et al. 2010; Menezes et al. 2017), it is impor-
tant to check that this is indeed true in our dataset. In this 
respect, the adjusted R2 is calculated to estimate the per-
centage of response variable (both Arousal and Valence) 
variation that is explained by its relationship with the pre-
dictor variables but considering the number of predictors 
in the regression model. Furthermore, the predicted R2 is 
computed to indicate how well the set of statistical features 
predict new responses of Arousal and Valence. Particularly, 
adjusted R2 − predicted R2 is of interest to determine whether 
the model is overfitted and adequate to provide valid predic-
tions for new observations.

4.3.2  Affective state classification

The Circumplex Model of Affect is a valuable representa-
tion of all affective states. Herein, the emotions are clas-
sified along two independent dimensions (refer to Fig. 3): 
Arousal and Valence. Arousal, in the vertical axis, describes 
the extent to which an affect is correlated to an individual 
sensation of energy; whilst Valence, in the horizontal axis, 
represents the degree to which an emotion reveals a positive 
or negative state of mind (Gerber et al. 2008).

As the primary aim of this research is to correctly iden-
tify the human emotional states, the Circumplex Model 
of Affect was utilized. This is consistent with the recent 

(5)Mxcp
= l+

h

f

(
N

2
− c

)

(6)SKxcp
=

∑N

n= 1

(
Xcp − !xcp

)4

(N − 1)"xcp

4

(7)kxcp
=

∑N

n= 1

(
Xcp − !xcp

)3

(N − 1)"xcp

3

findings from the neuroscience, behavioral and cognitive 
research fields (Pool et al. 2016; Binder et al. 2016; Des-
met 2018). In this regard, the first step involved collecting 
the Arousal and Valence values (SAM scale) reported by 
the participants (Barakat and Bradley 2010). These values 
were later discretized using the tripartition and bipartition 
labeling schemes as follows: (1) Tripartition: Low [1.0–3.0], 
Medium [4.0–6.0] and High [7.0–9.0] whilst (2) Bipartition: 
Low [1.0–3.0] and High [7.0–9.0]. Finally, the EEG biosig-
nals were classified through SVM (Liu and Sourina 2013; 
Chatchinarat et al. 2017; Menezes et al. 2017; Katsigiannis 
and Ramzan 2017) and Naïve Bayes (Kim et al. 2010; Jir-
ayucharoensak et al. 2014). Naïve Bayes was selected due 
to: (1) its high computational efficiency, (2) versatility, (3) 
easiness of implementation, (4) high scalability, (5) low need 
of training data, (6) suitability for binary and multiclass clas-
sification problems and (7) capability of handling continu-
ous and discrete data. On the other hand, SVM was chosen 
since: (1) it can avoid overfitting, (2) it is flexible due to 
the introduction of kernel, (3) it is robust against different 
outliers and model violations and (4) it learns with a small 
number of predictors.

5  Results and discussion

The results of the statistical analysis conducted for feature 
extraction as well as the validation of data quality and attrib-
utes considered for affective recognition are presented in this 
section. In addition, the outputs of classification methods 
(SVM and Naïve Bayes) are also shown below.

Fig. 3  The Circumplex Model of Affect (Gerber et al. 2008)
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5.1  Statistical features

When performing the correlation analysis between the brain-
waves (frequently categorized in four different frequency 
bands: α, β, δ, θ) and the affective states, the model evi-
denced a significant correlation between the response vari-
ables (Arousal and Valence) and the statistical features at a 
5% significance level (p-value = 0). In this respect, the P-val-
ues of mean/absolute average (refer to Table 2), standard 
deviation/absolute deviation (refer to Table 3) and median/
skewness/kurtosis (refer to Table 4) were estimated.

Specifically, it was found that !x"(AF3)
 (0.041), !x"(AF3)

 
(0.003) and kx!(f 3)

 (0.029) were meaningfully related 
(P-value > 0.05) to Arousal values. This suggests that a quad-
ratic model with the aforementioned statistical features may 
be appropriate (refer to Eq. 8) and there would therefore be 
more fit to train the models. The expression was established 
with the aid of Minitab 17 ® software by conducting a 
regression analysis.

Likewise, it was concluded that !x"(AF4)
 (0.034) and kx!(AF3)

 
(0.048) are both significant to Valence values. After carrying 
out a regression study, a mathematical model with these 
parameters was achieved (refer to Eq. 9). Better fit and 
increased classification performance may be also expected 
when training the model.

(8)
Arousal =

(
0.613!x"(AF3)

+ 0.00309kx"(f3)
− 0.4359!x#(AF3)

)2

It is of particular interest to note that kurtosis was found 
to be useful for both models. Therefore, it can be employed 
in future studies for supporting affective recognition activ-
ities. This should be complemented with the use of mean 
and standard deviation whose contribution is highly rel-
evant upon correlating brainwaves and affective states. In 
contrast, median, skewness and absolute measures were 
not estimated as meaningful and were subsequently dis-
carded in both Eq. 8 and Eq. 9. Another important find-
ing is that most of the significant features are related to β 
(Arousal) and δ (Valence) frequency bands. Additionally, 
it was observed that AF3 was identified as the most con-
tributing position for affective recognition.

Upon considering correlation measures, it can be appre-
ciated that the model fits well ( R − sq(adj) = 94.90% ) 
for Arousal and the predictive ability is highly satisfac-
tory ( R − sq(pred) = 94.86% ). Similarly, these metrics 
evidenced high correlation and prediction performance 
regarding Valence values withR − sq(adj) = 85.08% and 
R − sq(pred) = 83, 10% . It is also important to consider 
that the difference between these parameters is non-signif-
icant: 0, 04% and 1, 98% for Arousal and Valence respec-
tively. Hence, the models do not appear to be overfitted.

(9)
Valence =

(
0.715kx!(AF3)

+ 0, 000556"x!(AF4)
− 0.04318k2

x!(AF3)

)2

Table 2  P-values for mean and absolute average of the brainwaves 
obtained from each position

Position 
(brainwave)

Arousal Valence
!xnc(p)

!xnc (p)−ABS !xnc(p)
!xnc (p)−ABS

AF3 (α) 0.675 0.691 0.932 0.450
AF3 (β) 0.041* 0.480 0.178 0.703
AF3 (δ) 0.062 – 0.600 –
AF3 (θ) 0.003* 0.433 0.258 0.075
AF4 (α) 0.913 0.480 0.449 0.466
AF4 (β) 0.672 0.125 0.621 0.130
AF4 (δ) 0.187 – 0.208 –
AF4 (θ) 0.174 0.570 0.066 0.723
f3 (α) 0.429 0.735 0.328 0.901
f3 (β) 0.790 0.633 0.800 0.620
f3 (δ) 0.081 – 0.584 –
f3 (θ) 0.986 0.855 0.573 0.311
f4 (α) 0.860 0.986 0.985 0.764
f4 (β) 0.872 0.254 0.888 0.080
f4 (δ) 0.076 – 0.545 –
f4 (θ) 0.422 0.999 0.143 0.541

Table 3  P-values for standard deviation and absolute deviation of the 
brainwaves obtained from each position

Position (brain-
wave)

Arousal Valence
!xnc(p)

!xnc (p)−ABS !xnc(p)
!xnc (p)−ABS

AF3 (α) 0.681 0.719 0.408 0.450
AF3 (β) 0.421 0.462 0.843 0.933
AF3 (δ) 0.071 – 0.174 –
AF3 (θ) 0.152 0.082 0.201 0.359
AF4 (α) 0.501 0.548 0.679 0.777
AF4 (β) 0.202 0.226 0.094 0.108
AF4 (δ) 0.336 – 0.034* –
AF4 (θ) 0.524 0.521 0.589 0.327
f3 (α) 0.721 0.727 0.654 0.550
f3 (β) 0.662 0.651 0.575 0.626
f3 (δ) 0.252 – 0.562 –
f3 (θ) 0.730 0.752 0.372 0.392
f4 (α) 0.957 0.963 0.824 0.828
f4 (β) 0.255 0.282 0.060 0.074
f4 (δ) 0.133 – 0.399 –
f4 (θ) 0.933 0.846 0.935 0.714
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5.2  Emotion classification

When recognizing different emotions, we used the accuracy 
and recall as key performance indexes for evaluating differ-
ent classification methods. The true- and false-positive ratios 
were also considered for this purpose. In addition, strati-
fied k-fold cross-validation was applied ten times (k = 10) 
in order to assess the classification performance. Specifi-
cally, the amount of processed data in bipartition approach 
was 82964; whilst, 140724 were used in tripartition labeling 

scheme. The number of data per subsample was then 8296.4 
and 14072.4 for bipartition and tripartition correspondingly. 
This study aims to identify particular patterns regarding the 
features extracted from the EEG signals and their relation to 
different Valence and Arousal states. To do this, we imple-
mented SVM and Naïve Bayes techniques. Furthermore, a 
bipartition and tripartition labeling scheme, as outlined in 
Sect. 4.3.2, was used for each of the affective domains.

Tables 4, 5, 6 and 7 present the results obtained from 
all the dataset instances, i.e., all the tasks performed by 

Table 4  P-values for median, 
skewness and kurtosis of the 
brainwaves obtained from each 
position

Position (brain-
wave)

Arousal Valence
Mxnc(p)

SKxnc(p)
kxnc(p)

Mxnc(p)
SKxnc(p)

kxnc(p)

AF3 (α) 0.414 0.227 0.572 0.674 0.876 0.561
AF3 (β) 0.749 0.431 0.029* 0.203 0.057 0.927
AF3 (δ) 0.365 0.114 0.753 0.995 0.856 0.048*
AF3 (θ) 0.236 0.523 0.103 0.872 0.208 0.639
AF4 (α) 0.427 0.933 0.885 0.849 0.967 0.403
AF4 (β) 0.657 0.385 0.481 0.314 0.967 0.150
AF4 (δ) 0.637 0.771 0.934 0.271 0.053 0.843
AF4 (θ) 0.839 0.439 0.752 0.768 0.630 0.391
f3 (α) 0.229 0.785 0.363 0.212 0.691 0.682
f3 (β) 0.570 0.347 0.799 0.133 0.130 0.380
f3 (δ) 0.175 0.283 0.102 0.149 0.230 0.593
f3 (θ) 0.244 0.992 0.259 0.170 0.832 0.114
f4 (α) 0.572 0.295 0.211 0.799 0.710 0.963
f4 (β) 0.506 0.196 0.671 0.224 0.290 0.368
f4 (δ) 0.082 0.169 0.459 0.627 0.326 0.817
f4 (θ) 0.726 0.784 0.700 0.492 0.739 0.244

Table 5  Results of classification process using tripartition labeling scheme (statistical and powerband parameters)

Method Level Arousal Valence
Accuracy (%) Recall (%) Tp rate (%) Fp rate (%) Accuracy (%) Recall (%) Tp rate (%) Fp rate (%)

Support vector machine Low 78.0 70.6 70.6 4.4 76.8 67.8 67.8 6
Medium 80.7 82.7 82.7 13.7 81.5 85.2 85.2 17
High 78.7 80.0 80.0 15 74.9 76.2 76.2 11.2

Naïve Bayes Low 22.7 86 86 65.4 25.9 86.9 86.9 73.1
Medium 63.1 11.6 11.6 4.7 56.8 20 20 13.3
High 50.9 29.1 29.1 19.4 67.4 16.1 16.1 3.4

Table 6  Results of classification process using bipartition labeling scheme (statistical and powerband parameters)

Method Level Arousal Valence
Accuracy (%) Recall (%) Tp rate (%) Fp rate (%) Accuracy (%) Recall (%) Tp rate (%) Fp Rate

Support vector machine Low 92.4 92.1 92.1 3.4 91.8 78.5 78.5 5.2%
High 96.5 96.6 96.6 7.9 85.5 94.8 94.8 21.5%

Naïve Bayes Low 37.8 88.3 88.3 64.8 46.9 95 95 80.3%
High 87.1 35.2 35.2 11.7 84 19.7 19.7 5%
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participants, by using SVM and Naïve Bayes methods under 
a tripartition scheme. Particularly, Table 5 compares the two 
methods (SVM and Naïve Bayes) in terms of all the attrib-
utes (statistical and powerband parameters) relating to the 
extracted brainwaves (α, β, δ, θ). After conducting a paired 
sample t test from the results of Table 5, the p-values were 
found to be 0.096 (Arousal) and 0.08 (Valence) which evi-
dences that SVM was better than Naïve Bayes in terms of 
accuracy. The biggest difference between the two methods 
was observed in low partition of Arousal (55.3%) where 
accuracy was equal to 78% and 22.7% for SVM and Naïve 
Bayes correspondingly. The same test was applied for ana-
lyzing the performance in terms of recall and true positive 
rate. In this regard, no clear difference was observed between 
SVM and Naïve Bayes for Arousal (p-value = 0.307) and 
Valence (p-value = 0.324). This is due to the fact that Naïve 
Bayes had a superior performance in low partitions (big-
gest difference = 19.1%) whilst SVM was evidently better in 
medium (biggest difference = 71.1%) and high (biggest dif-
ference = 60.1%) ranges. Regarding the comparison in terms 
of false positive rate, no clear discrepancy was seen between 
the classification methods for both Arousal (p-value = 0.473) 
and Valence (p-value = 0.526). This is because Naïve Bayes 
had a lower false positive rate in medium partitions (biggest 
difference = 9.0%) whilst SVM performed better in low (big-
gest difference = 67.1%) and high (biggest difference = 7.8%) 
ranges.

The results are more interesting in terms of the biparti-
tion scheme for SVM (refer to Table 6). The paired sample 
t test derived from the results of Table 6 evidenced that the 
percentage of correctly classified instances in SVM was sta-
tistically higher than that offered by Naïve Bayes in both 
Arousal (p-value = 0.196) and Valence (p-value = 0.239). 
The most significant gap between these algorithms can 
be found in low range of Arousal (54.6%) where accuracy 
was equal to 92.4% and 37.8% for SVM and Naïve Bayes 
respectively. The same analysis was implemented for veri-
fying the recall and true positive rate of both algorithms 
under a bipartition labeling scheme. In this respect, no sig-
nificant difference was observed between SVM and Naïve 
Bayes (p-value = 0.256). This is underpinned by the fact that 

Naïve Bayes had a superior performance in low partition 
of Valence (difference = 16.5%) while SVM was evidently 
better in Arousal (biggest difference = 61.4%) and high parti-
tion of Valence (difference = 75.1%) ranges. When analysing 
false positive rate, no clear discrepancy was seen between 
the classification methods (p-value = 0.256). Such find-
ing is explained by tha fact that Naïve Bayes had a lower 
false positive rate in the high partition of Valence (differ-
ence = 16.5%) whilst SVM performed better in Arousal (big-
gest difference = 61.4%) and the low partition of Valence 
(difference = 75.1%).

On the other hand, the average accuracy using the 
bipartition labeling scheme was proved to be significantly 
higher than that provided using the tripartition labeling 
scheme for both Arousal (p-value = 0.014) and Valence 
(p-value = 0.003). When classifying Arousal, the best result 
using the bipartition scheme was 96.5% (high partition) 
whilst the best accuracy value using the tripartition scheme 
was 80.7% (medium partition). Similarly, upon considering 
Valence the best value in bipartition scheme was obtained 
in low partition (91.8%) which is higher than that achieved 
from the tripartition method scheme (81.5%). Average recall 
and true positive rate using the bipartition scheme were 
also concluded to be greater than those resulting from the 
use of tripartition scheme for Arousal (p-value = 0.04) and 
Valence (p-value = 0.024). When considering Arousal, the 
best values provided by the use of bipartition and tripar-
tition schemes were 96.6% (high partition) and 86% (low 
partition) respectively. With respect to Valence, the highest 
score was obtained using the bipartition scheme (95.0%), 
which is greater than the best value obtained using the tri-
partition scheme (86.9%). Another aspect to be considered 
in this analysis is the false positive rate. In this regard, the 
t test evidenced that there is no statistically significant dif-
ference between the partitioning methods in both Arousal 
(p-value = 0.064) and Valence (p-value = 0.169) variables 
(Fig. 4).

Figures 5, 6 illustrate the Receiver Operating Charac-
teristic (ROC) curves for Arousal and Valence when using 
Naïve Bayes with statistical and powerband parameters. 
ROCs related to SVM are presented in Figs. 7, 8. When 

Table 7  Results of classification process using tripartition labeling scheme (powerband parameters)

Method Level Arousal Valence
Accuracy (%) Recall (%) Tp rate (%) Fp rate (%) Accuracy (%) Recall (%) Tp rate (%) Fp rate (%)

Support vector machine Low 0 0 0 0 37.5 0.5 0.5 0.3
Medium 49.9 69.3 69.3 48.2 53.1 79.6 79.6 61.6
High 57.9 61.1 61.1 30.7 41.2 40.1 40.1 25.1

Naïve Bayes Low 31.7 8.9 8.9 4.3 25.9 86.9 86.9 73.1
Medium 56.2 6.6 6.6 3.6 56.8 20 20 13.3
High 41.7 91.9 91.9 88.8 67.4 16.1 16.1 3.4
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analyzing these curves, it can be corroborated that, in this 
case, SVM performs better than Naïve Bayes regarding 
Arousal. For instance, the area under curve in low parti-
tion (tripartition labeling scheme) of Arousal when using 
Naïve Bayes (0.715) (refer to Fig. 5a) is lower compared to 
SVM (0.8772) (refer to Fig. 7a). Similarly, when applying 

the bipartition labeling scheme and Naïve Bayes (refer to 
Fig. 5e), the area under curve in high partition of Arousal 
was 0.7482; however, when employing SVM, the area was 
found to be 0.9333 (refer to Fig. 7e). A similar conclu-
sion was achieved when comparing the ROC curves in 
terms of Valence. For example, the area under curve in 

Fig. 4  Mapping from SAM 
scale Valence and Arousal 
values to Labels (Low, Medium, 
High) (Menezes et al. 2017)

Fig. 5  ROC curves using Naïve Bayes with statistical and powerband parameters for a low, b medium, c high partitions of Arousal (tripartition 
labeling scheme) and d low, e high levels of Arousal (bipartition labeling scheme)

Fig. 6  ROC curves using Naïve Bayes with statistical and powerband parameters for a low, b medium, c high partitions of Valence (tripartition 
labeling scheme) and d low, e high levels of Valence (bipartition labeling scheme)
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medium level (refer to Fig. 8b) when employing SVM was 
0.8484, whilst Naïve Bayes provided an inferior perfor-
mance (0.6299) (refer to Fig. 6b). In bipartition scheme, 
the area under ROC for the high partition was 0.6734 in 
Naïve Bayes (refer to Fig. 6e) and 0.8891 in SVM (refer 
to Fig. 8e).

SVM and Naïve Bayes were also tested by consider-
ing the powerband parameters derived from the EEG sig-
nals and employing the two partitioning schemes (refer to 
Tables 7, 8). In accordance with the resulting p-values for 
Arousal (p-value = 0.652) and Valence (p-value = 0.634), 
there is no significant difference between the classification 
algorithms regarding accuracy. The same conclusion was 
reached for recall and true positive rate in both Arousal 
(p-value = 0.811) and Valence (p-value = 0.985) vari-
ables. Similarly, no discrepancy was found between SVM 

and Naïve Bayes regarding false positive rate (p-value-
Arousal = 0.473; p-value-Valence = 0.982).

The bipartition labeling scheme was also implemented 
with powerband variables (refer to Table 8). The paired 
sample t test demonstrated that there are no meaning-
ful differences when comparing accuracy values of SVM 
and Naïve Bayes (p-value [Arousal] = 0.486; p-value 
[Valence] = 0.945). Likewise, non-significant disparities 
were observed in Arousal (p-value = 0.821) and Valence 
(p-value = 0.980) when contrasting the algorithms in rela-
tion to recall and true positive rate. The same conclusion 
was obtained when correlating false positive rates (p-value 
[Arousal] = 0.821; p-value [Valence] = 0.980).

The average accuracy from the bipartition scheme was 
found to be statistically equivalent to that provided from the 
tripartition scheme regarding Arousal (p-value = 0.109). In 

Fig. 7  ROC curves using SVM with statistical and powerband parameters for a low, b medium, c high partitions of Arousal (tripartition labeling 
scheme) and d low, e high levels of Arousal (bipartition labeling scheme)

Fig. 8  ROC curves using SVM with statistical and powerband parameters for a low, b medium, c high partitions of Valence (tripartition labeling 
scheme) and d low, e high levels of Valence (bipartition labeling scheme)

Table 8  Results of classification process using bipartition labeling scheme (powerband parameters)

Method Level Arousal Valence
Accuracy (%) Recall (%) Tp rate (%) Fp rate (%) Accuracy (%) Recall (%) Tp rate (%) Fp rate (%)

Support vector machine Low 0 0 0 0 66.8 17.8 17.8 6.6
High 69.2 100 100 100 60.3 93.4 93.4 82.2

Naïve Bayes Low 44.8 10.5 10.5 5.8 44.4 96.6 96.6 90.5
High 70.2 94.2 94.2 89.5 79.1 9.5 9.5 3.4
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contrast, it was proved to be significantly higher in relation 
to Valence values (p-value = 0.006). When classifying emo-
tion along Valence dimension, the best accuracy obtained 
using the bipartition scheme was 79.1% (high partition). 
Meanwhile, the best accuracy rate obtained using the tri-
partition scheme was 67.4% (high partition). Differences 
respecting average recall and true positive rate using the 
bipartition scheme were also investigated and confirmed to 
be non-significant in comparison with those emanating from 
the use of tripartition scheme for Arousal (p-value = 0.169) 
and Valence (p-value = 0.121). We also examined the false 
positive rates of both partitioning schemes. In this respect, 

p-values were determined to be greater than the alpha 
level and therefore, they do not present a meaningful sta-
tistical difference p-value [Arousal] = 0.187) and p-value 
[Valence] = 0.107) parameters.

Figures 9 and 10 present the ROC curves for Arousal 
when applying Naïve Bayes and SVM with powerband 
parameters respectively. ROCs related to Valence dimen-
sion are shown in Figs. 11 and 12. These plots evidence 
that, in most of these cases, Naïve Bayes provides bet-
ter results than SVM in terms of Arousal. For example, 
the area under curve in low partition (tripartition scheme) 
of Arousal was 0.6164 when implementing Naïve Bayes 

Fig. 9  ROC curves using Naïve Bayes with powerband parameters for a low, b medium, c high partitions of Arousal (tripartition labeling 
scheme) and d low, e high levels of Arousal (bipartition labeling scheme)

Fig. 10  ROC curves using SVM with powerband parameters for a low, b medium, c high partitions of Arousal (tripartition labeling scheme) and 
d low, e high levels of Arousal (bipartition labeling scheme)

Fig. 11  ROC curves using Naïve Bayes with powerband parameters for a low, b medium, c high partitions of Valence (tripartition labeling 
scheme) and d low, e high levels of Valence (bipartition labeling scheme)
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(refer to Fig. 9a) and 0.5 when applying SVM (refer to 
Fig. 10a). Likewise, when using bipartition and Naïve 
Bayes (refer to Fig. 9d), the area under curve in low parti-
tion of Arousal was 0.6721; meanwhile, when employing 
SVM, the area was estimated to be 0.5 (refer to Fig. 10d). 
The only case where a different conclusion was drawn 
(SVM was better than Naïve Bayes) can be observed in 
the high level of tripartition (refer to Figs. 9c, 10c). On the 
other hand, when contrasting the classification methods in 
terms of Valence, it was also evidenced that Naïve Bayes 
was superior to SVM. In tripartition, for instance, the area 
under ROC in medium level when employing Naïve Bayes 
(refer to Fig. 11b) was 0.6883, while the performance pro-
vided by SVM was 0.5916 (refer to Fig. 12b). In biparti-
tion, a small difference in favor of Naïve Bayes (0.0132) 
was observed between the areas under curve for the high 
partition: Naïve Bayes (refer to Fig. 11e) and SVM (refer 
to Fig. 12e).

The classification algorithms were also investigated and 
compared when using all the statistical features that were 
previously established in Sect. 4.3.1. Both the bipartition 
(refer to Table 9) and tripartition (refer to Tables 10, 11, 
12) labeling schemes were also implemented. The p-values 
for Arousal (p-value = 0.182) and Valence (p-value = 0.416) 
show that there is no meaningful differences between the 
methods with respect to the percentage of correctly classi-
fied instances. The same conclusion was achieved for recall 
and true positive rate in both Arousal (p-value = 0.739) and 
Valence (p-value = 0.771) dimensions. Likewise, no dis-
similarities were observed between SVM and Naïve Bayes 
in relation to false positive rate (p-value-Arousal = 0.477; 
p-value-Valence = 0.566).

The bipartition approach was also employed with the 
data derived from the predefined statistical parameters (refer 
to Table 10). Comparisons were also made using paired t 
tests. There were no differences in the mean accuracy 

Fig. 12  ROC curves using SVM with powerband parameters for a low, b medium, c high partitions of Valence (tripartition labeling scheme) and 
d low, e high levels of Valence (bipartition labeling scheme)

Table 9  Results of classification process using tripartition labeling scheme (all statistical features)

Method Level Arousal Valence
Accuracy (%) Recall (%) Tp rate (%) Fp rate (%) Accuracy (%) Recall (%) Tp rate (%) Fp rate (%)

Support vector machine Low 74.6 66.3 66.3 5 75.8 62.6 62.6 5.9
Medium 81.0 83.2 83.2 13.5 78.4 86.1 86.1 20.8
High 78.9 80.6 80.6 15 75.8 74.3 74.3 10.4

Naïve Bayes Low 223 88.1 88.1 68.4 25.5 89 89 76.4
Medium 62.2 11.3 11.3 4.7 52.7 15.4 15.4 12.2
High 50.4 25.4 25.4 17.3 69.1 16 16 3.1

Table 10  Results of classification process using bipartition labeling scheme (all statistical features)

Method Level Arousal Valence
Accuracy (%) Recall (%) Tp rate (%) Fp rate (%) Accuracy (%) Recall (%) Tp rate (%) Fp rate (%)

Support vector machine Low 90.2 91.1 91.1 4.4 89.5 81.7 81.7 7.1
High 96.0 95.6 95.6 8.9 87.2 92.9 92.9 18.3

Naïve Bayes Low 37.4 91.3 91.3 68.0 46.9 95.2 95.2 80.5
High 89.2 32.0 32.0 8.7 84.6 19.5 19.5 4.8
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scores obtained by using SVM and Naïve Bayes (p-value 
[Arousal] = 0.418; p-value [Valence] = 0.461). Also, no crit-
ical discrepancies were seen in Arousal (p-value = 0.502) 
and Valence (p-value = 0.616) upon contrasting the meth-
ods regarding recall and true positive rate measures. This 
inference was further reached when comparing false positive 
rates (p-value [Arousal] = 0.502; p-value [Valence] = 0.616).

The mean accuracy from use of the bipartition scheme 
was concluded to be statistically bigger than that offered from 
the tripartition scheme regarding Arousal (p-value = 0.016) 
and Valence values (p-value = 0.003). When classifying 
affective Arousal dimension, the best accuracy score using 
the bipartition scheme was 96% (high partition) whilst the 
best value using the tripartition scheme was 81% (high par-
tition). On the other hand, when categorizing Valence, the 
higher percentage of correctly classified instances using the 
bipartition scheme was 95.2% while use of the tripartion 

scheme provided 78.4%. However, when analyzing the dif-
ferences between the bipartition and tripartition schemes 
in terms of average recall and true positive rate, no clear 
difference was detected in both Arousal (p-value = 0.082) 
and Valence (p-value = 0.062). We also investigated the false 
positive rates of the partitioning methods under study. The 
p-values were confirmed to be higher than 0.05 and hence, 
a meaningful statistical difference can not be underpinned 
(p-value [Arousal] = 0.150; p-value [Valence] = 0.093).

Figures 13 and 14 show the ROC plots for Arousal 
when implementing SVM and Naïve Bayes with statisti-
cal parameters correspondingly. The performance curves 
related to Valence parameter are presented in Figs. 15 
and 16. These graphs demonstrate that, for this particular 
case, SVM performs better than Naïve Bayes in terms of 
Arousal. In particular, the area under curve in medium 
level (tripartition scheme) of Arousal was 0.8641 upon 

Table 11  Results of classification process by using tripartition labeling scheme (significant statistical features)

Method Level Arousal Valence
Accuracy (%) Recall (%) Tp rate (%) Fp rate (%) Accuracy (%) Recall (%) Tp rate (%) Fp rate (%)

Support vector machine Low 90.5 76.8 76.8 4.2 82.1 69.9 69.9 5.2
Medium 98.3 96.3 96.3 11.4 84.9% 96.2 96.2 17.5
High 95.7 93.3 93.3 12.6 82.1 83.6 83.6 9.1

Naïve Bayes Low 34.0 94.8 94.8 63.2 34.8 83.1 83.1 71.0
Medium 94.8 12.1 12.1 4.3 71.9 14.3 14.3 11.3
High 76.8 27.3 27.3 16.0 94.3 14.9 14.9 2.9

Table 12  Results of classification process bipartition labeling scheme (significant statistical features)s

Method Level Arousalss Valence
Accuracy (%) Recall (%) Tp rate (%) Fp rate (%) Accuracy (%) Recall (%) Tp rate (%) Fp rate (%)

Support vector machine Low 91.9 92.6 92.6 4.3 84.2 77.7 77.7 6.7
High 97.8 97.1 97.1 8.7 82.0 88.4 88.4 17.4

Naïve Bayes Low 39.7 94.8 94.8 65.4 46.1 83.1 83.1 68.7
High 94.8 33.2 33.2 8.4 83.1 17.0 17.0 4.1

Fig. 13  ROC curves using SVM with statistical parameters for a low, b medium, c high partitions of Arousal (tripartition labeling scheme) and d 
low, e high levels of Arousal (bipartition labeling scheme)
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utilizing SVM (refer to Fig. 13b) and 0.6016 when exe-
cuting Naïve Bayes (refer to Fig. 14b). In addition, when 
applying the bipartition approach and SVM (refer to 
Fig. 13d), the area under curve in low level of Arousal was 
0.9333; however, when using Naïve Bayes, the area was 
calculated to be 0.754 (refer to Fig. 14d). When correlat-
ing SVM and Naïve Bayes in terms of Valence, it was also 
proved that SVM was better than Naïve Bayes. In triparti-
tion, for example, the area under ROC curve in low level 
when applying SVM (refer to Fig. 15a) was 0.8651; nev-
ertheless, the achieved performance in Naïve Bayes was 
0.6717 (refer to Fig. 16a). Similarly, when using biparti-
tion scheme, SVM (refer to Fig. 15d, e) performed better 

than Naïve Bayes and SVM (refer to Fig. 16d, e) for both 
low and high partitions of Valence.

Table 10 (tripartition) and 11 (bipartition) illustrate the 
results of classification metrics for both Arousal and Valence 
when using only significant statistical features. Compared to 
the results derived from the use of all the predefined statistical 
parameters, it was proved that the average accuracy in Arousal 
can be significantly increased when introducing only !x"(AF3)

 , 
!x"(AF3)

 and kx!(f 3)
 (p-value = 0.002). Furthermore, it was found 

that the recall and true positive rate can be also augmented 
with the inclusion of the above-mentioned features 
(p-value = 0.004). On the other hand, a p-value = 0.007 

Fig. 14  ROC curves using Naïve Bayes with statistical parameters for a low, b medium, c high partitions of Arousal (tripartition labeling 
scheme) and d low, e high levels of Arousal (bipartition labeling scheme)

Fig. 15  ROC curves using SVM with statistical parameters for a low, b medium, c high partitions of Valence (tripartition labeling scheme) and d 
low, e high levels of Valence (bipartition labeling scheme)

Fig. 16  ROC curves using Naïve Bayes with statistical parameters for a low, b medium, c high partitions of Valence (tripartition labeling 
scheme) and d low, e high levels of Valence (bipartition labeling scheme)
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evidenced that a reduced false positive rate can be achieved 
with this change. In contrast, upon considering Valence dimen-
sion, there were no meaningful differences regarding accuracy 
when including !x"(AF4)

 and kx!(AF3)
 (p-value = 0.092). In addition, 

the same conclusion was reached when analyzing the 
recall/true positive rate (p-value = 0.848) and false positive 
ratio (p-value = 0.052).

When contrasting the results emanating from signifi-
cant statistical features and those resulting from powerband 
parameters, it was proved that significant parameters pro-
vided better accuracy of the Arousal (p-value = 0.002) and 
Valence (p-value = 0.001). The comparison in terms of recall 
and true positive rate was also studied. The results (p-value 
[Arousal] = 0.172; p-value [Valence] = 0.110) demonstrated 
that there is no clear difference between the scores derived 
from the aforementioned variables. A similar conclusion 
was drawn when comparing false positive ratios (p-value 
[Arousal] = 0.337; p-value [Valence] = 0.121).

Finally, it was found that the percentage of correctly clas-
sified instances was higher for Arousal when considering sig-
nificant statistical parameters compared to that obtained upon 
combining powerband parameters and all statistical features 
(p-value = 0.002); although, no significant difference was 
found regarding Valence (p-value = 0.122). This relation was 
also examined by analyzing the recall and true positive rate 
which was concluded to be bigger in Arousal (p-value = 0.018) 
when using the significant parameters whilst no difference was 
detected in Valence (p-value = 0.585). The false positive rates 
did not differ significantly (p-value [Arousal] = 0.055; p-value 
[Valence] = 0.087).

Also, the parameters that can be better linked with the 
Arousal dimension are !x"(AF3)

 (p-value = 0.041), !x"(AF3)
 

(p-value = 0.003) and kx!(f 3)
 (p-value = 0.029) whilst in 

Valence, the best features were !x"(AF4)
 (p-value = 0.034) and 

kx!(AF3)
 (p-value = 0.048). In each case, combining significant 

variables improves the classification performance metrics. 
In this particular case, the results have revealed that fear, 
sadness and disgust were more difficult to discriminate. In 
this regard, other statistical and powerband features can be 
considered in order to increase the ability of distinguishing 
these emotions. Additionally, other brain positions may be 
better correlated to these emotional states and should be then 
further explored. In contrast, happiness, surprise and anger 
were found to be easier for detection.

6  Conclusions

Affective recognition is an important research area because 
it has potential to contribute to multiple applications in 
medicine, education and other fields. In accordance with 

the reported literature, several authors have applied DM, 
machine learning and artificial intelligence techniques for 
affective recognition (e.g. Support Vector Machine and 
Bayesian Networks).

Most previous works have made use of benchmark data-
sets where EEG signals are collected under controlled condi-
tions that are very different from activities of everyday life. 
This study shows that satisfactory results can be observed 
when using EEG signals for affective recognition using a 
small headset with only 4 four channels and during activities 
that are typical of everyday life.

The results herein described can be potentially used for 
recognizing affective states. Considering significant statis-
tical features combined with a bipartition labeling scheme, 
emotions can be effectively distinguished. Results show that 
SVM performed better than Naïve Bayes in some cases. 
Particularly, the highest percentage of correctly classified 
instances was achieved when using significant statistical 
parameters ([Arousal] = 98.3%; [Valence] = 94.3%). Addi-
tionally, the best recall/true positive rate ([Arousal] = 97.1%; 
[Valence] = 96.2%) and the lowest false positive ratio 
([Arousal] = 4.2%; [Valence] = 2.9%) were also reached with 
the above-mentioned parameters.Furthermore, the biparti-
tion approach was proved to be better than tripartition.

The above-mentioned results validate the ability of the 
SVM method for affective recognition when integrating with 
DM techniques. Another important aspect is that the use of 
statistical features plays a relevant role to increase the power 
and effectiveness of the proposed approach. In this regard, it 
was possible to provide an evidence base on the association 
between the significant features and emotional states which 
was concluded to be highly correlated with 94.90% and 
85.08% for Valence and Arousal correspondingly, in addi-
tion to demonstrating their high predictive ability (94.86% 
and 83.10% respectively). Likewise, kurtosis was concluded 
to be highly correlated with both Valence and Arousal and it 
should be then used in future related studies.

Another relevant aspect is that most of the significant sta-
tistical parameters are related to β (Arousal) and δ (Valence) 
frequency bands. Furthermore, it was found that AF3 was 
identified as the most contributing position for affective 
recognition.

These results are extensible to medicine and education 
fields but also open to further questions that we aim to 
investigate. For example, could we use the most contribut-
ing electrode, AF3, and still have results that are interesting 
for context-aware application? How can we compare these 
results with the other signals in the dataset? Can we use 
the results obtained with the EEG data as a groudtruth for 
analyzing other biosignals? Do the images obtained dur-
ing the data collection match the results from the EEG and 
the Self Assessment Manikin? Or can we obtain with the 
biosignals a more accurate affective state evaluation other 
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than the emotion that the person is willing to share with their 
facial expressions?
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