343 research outputs found

    Pain neuroscience education on YouTube.

    Full text link
    OBJECTIVES: The Internet in general, and YouTube in particular, is now one of the most popular sources of health-related information. Pain neuroscience education has become a primary tool for managing persistent pain, based in part on the discovery that information about pain can change pain. Our objective was to examine the availability, characteristics, and content of YouTube videos that address the neuroscience of pain. METHODS: We conducted a systematic review of videos on YouTube using the search terms "pain education", "what is pain", and "pain brain" in January 2018. Videos were included if they were in English, were under 10 minutes long, and included information on the neuroscience of pain. Videos were coded for (i) descriptive characteristics (e.g., number of views, duration on YouTube), (ii) source and style, (iii) whether or not they addressed seven pre-determined target concepts of pain neuroscience education (e.g., 'Pain is not an accurate marker of tissue state'), and (iv) how engaging they were. RESULTS: We found 106 unique videos that met the inclusion criteria. The videos ranged from having four views to over five million views (Mdn = 1,163 views), with the three most highly viewed videos accounting for 75% of the total views. Animated videos were much more highly viewed than non-animated videos. Only a small number of videos had been posted by a clearly-identifiable reputable source such as an academic or medical institution (10%), although a number of videos were posted by healthcare professionals and professional medical societies. For a small number of videos (7%), the source was unclear. We found 17 videos that addressed at least one target concept of pain neuroscience science education, only nine of which were considered to be at least somewhat engaging. The target concept 'Pain is a brain output' was considered to be well addressed by the most videos (N = 11), followed by 'Pain is a protector' (N = 10). We found only one video that adequately addressed all seven target concepts of pain neuroscience education. DISCUSSION: YouTube contains a variety of videos that practitioners, patients, and families may view to access pain neuroscience education information. A small portion of these videos addressed one or more target concepts of pain neuroscience education in an engaging manner. It is yet to be determined to what extent patients are able to learn information from these videos, to what extent the videos promote behavior change, and thus to what extent the videos may be useful for clinical practice

    Force spectroscopy in studying infection

    Get PDF
    Biophysical force spectroscopy tools - for example optical tweezers, magnetic tweezers, atomic force microscopy, - have been used to study elastic, mechanical, conformational and dynamic properties of single biological specimens from single proteins to whole cells to reveal information not accessible by ensemble average methods such as X-ray crystallography, mass spectroscopy, gel electrophoresis and so on. Here we review the application of these tools on a range of infection-related questions from antibody-inhibited protein processivity to virus-cell adhesion. In each case we focus on how the instrumental design tailored to the biological system in question translates into the functionality suitable for that particular study. The unique insights that force spectroscopy has gained to complement knowledge learned through population averaging techniques in interrogating biomolecular details prove to be instrumental in therapeutic innovations such as those in structure-based drug design

    Using Fluorescence Recovery After Photobleaching (FRAP) to study dynamics of the Structural Maintenance of Chromosome (SMC) complex in vivo

    Get PDF
    The SMC complex, MukBEF, is important for chromosome organization and segregation in Escherichia coli. Fluorescently tagged MukBEF forms distinct spots (or 'foci') in the cell, where it is thought to carry out most of its chromosome associated activities. This chapter outlines the technique of Fluorescence Recovery After Photobleaching (FRAP) as a method to study the properties of YFP-tagged MukB in fluorescent foci. This method can provide important insight into the dynamics of MukB on DNA and be used to study its biochemical properties in vivo

    Fenites associated with carbonatite complexes : a review

    Get PDF
    This is the author accepted manuscript. The final version is available from Elsevier via the DOI in this record.Carbonatites and alkaline-silicate rocks are the most important sources of rare earth elements (REE) and niobium (Nb), both of which are metals imperative to technological advancement and associated with high risks of supply interruption. Cooling and crystallizing carbonatitic and alkaline melts expel multiple pulses of alkali-rich aqueous fluids which metasomatize the surrounding country rocks, forming fenites during a process called fenitization. These alkalis and volatiles are original constituents of the magma that are not recorded in the carbonatite rock, and therefore fenites should not be dismissed during the description of a carbonatite system. This paper reviews the existing literature, focusing on 17 worldwide carbonatite complexes whose attributes are used to discuss the main features and processes of fenitization. Although many attempts have been made in the literature to categorize and name fenites, it is recommended that the IUGS metamorphic nomenclature be used to describe predominant mineralogy and textures. Complexing anions greatly enhance the solubility of REE and Nb in these fenitizing fluids, mobilizing them into the surrounding country rock, and precipitating REE- and Nb-enriched micro-mineral assemblages. As such, fenites have significant potential to be used as an exploration tool to find mineralized intrusions in a similar way alteration patterns are used in other ore systems, such as porphyry copper deposits. Strong trends have been identified between the presence of more complex veining textures, mineralogy and brecciation in fenites with intermediate stage Nb-enriched and later stage REE enriched magmas. However, compiling this evidence has also highlighted large gaps in the literature relating to fenitization. These need to be addressed before fenite can be used as a comprehensive and effective exploration tool.This research has received funding from the European Union’s Horizon 2020 research and innovation programme under grant No 689909

    A prognostic index for operable, node-negative breast cancer

    Get PDF
    Clinical data and samples from patients diagnosed, more than 10 years previously, with operable node-negative breast cancer (participants in the Scottish Adjuvant Tamoxifen trial), were revisited, Cases with two distinct categories of outcome were selected; more than 10 years disease-free survival ('good outcome') or distant relapse within 6 years of diagnosis ('poor outcome'). An initial set of cases was analysed for a range of putative prognostic markers and a prognostic index, distinguishing the two outcome categories, was calculated. This index was then validated by testing its predictive power on a second, independent set of cases. A combination of histological grade plus immunochemical staining for BCL-2, p27 and Cyclin D 1, generated a useful prognostic index for tamoxifen-treated patients but not for those treated by surgery alone, The value of the index was confirmed in a second set of tamoxifen-treated, early stage breast cancers. Over-all, it correctly predicted good and poor outcome in 79 and 74% of cases, respectively (odds ratio 11.0). Other markers assessed added little to prediction of outcome. In the case of molecular assays, sensitivity and reliability were compromised by the age of the tissue specimens and the variability of fixation protocols. In selecting patients for adjuvant systemic chemotherapy, the proposed index improves considerably on current international guidelines and matches the performance reported for 'gene-expression signature' analysis. (C) 2004 Cancer Research UK.</p

    Lead isotope evolution of the Central European upper mantle: Constraints from the Bohemian Massif

    Get PDF
    This study focuses on Pb isotope data and whole-rock geochemistry of intrusive and extrusive volcanic rocks of the Bohemian Massif that sampled the upper mantle. Special attention is paid on whether Late Palaeozoic to Quaternary Central European mantle-derived rocks sampled different mantle sources on a local to regional scale and through time.Tato studie se zabývá Pb izotopovými daty a horninovou geochemií intruzivních i výlevných vulkanických hornin Českého masivu, které vzorkovaly svrchní plášť. Speciální důraz je kladen na to, zda pozdně paleozoické až kvartérní středoevropské horniny odvozené z pláště vzorkují odlišné plášťové zdroje v lokálním až regionálním měřítku a v průběhu času
    corecore