Biophysical force spectroscopy tools - for example optical tweezers, magnetic
tweezers, atomic force microscopy, - have been used to study elastic,
mechanical, conformational and dynamic properties of single biological
specimens from single proteins to whole cells to reveal information not
accessible by ensemble average methods such as X-ray crystallography, mass
spectroscopy, gel electrophoresis and so on. Here we review the application of
these tools on a range of infection-related questions from antibody-inhibited
protein processivity to virus-cell adhesion. In each case we focus on how the
instrumental design tailored to the biological system in question translates
into the functionality suitable for that particular study. The unique insights
that force spectroscopy has gained to complement knowledge learned through
population averaging techniques in interrogating biomolecular details prove to
be instrumental in therapeutic innovations such as those in structure-based
drug design