227 research outputs found
Three dimensional ink-jet printing of biomaterials using ionic liquids and co-solvents
1-Ethyl-3-methylimidazolium acetate ([C2C1Im][OAc]) and 1-butyl-3-methylimidazolium acetate ([C4C1Im][OAc]) have been used as solvents for the dissolution and ink-jet printing of cellulose from 1.0 to 4.8 wt%, mixed with the co-solvents 1-butanol and DMSO. 1-Butanol and DMSO were used as rheological modifiers to ensure consistent printing, with DMSO in the range of 41–47 wt% producing samples within the printable range of a DIMATIX print-head used (printability parameter < 10) at 55 °C, whilst maintaining cellulose solubility. Regeneration of cellulose from printed samples using water was demonstrated, with the resulting structural changes to the cellulose sample assessed by scanning electron microscopy (SEM) and white light interferometry (WLI). These results indicate the potential of biorenewable materials to be used in the 3D additive manufacture process to generate single-component and composite materials
Integration of additive manufacturing and inkjet printed electronics: a potential route to parts with embedded multifunctionality
Additive manufacturing, an umbrella term for a number of different manufacturing techniques, has attracted increasing interest recently for a number of reasons, such as the facile customisation of parts, reduced time to manufacture from initial design, and possibilities in distributed manufacturing and structural electronics. Inkjet printing is an additive manufacturing technique that is readily integrated with other manufacturing processes, eminently scalable and used extensively in printed electronics. It therefore presents itself as a good candidate for integration with other additive manufacturing techniques to enable the creation of parts with embedded electronics in a timely and cost effective manner. This review introduces some of the fundamental principles of inkjet printing; such as droplet generation, deposition, phase change and post-deposition processing. Particular focus is given to materials most relevant to incorporating structural electronics and how post-processing of these materials has been able to maintain compatibility with temperature sensitive substrates. Specific obstacles likely to be encountered in such an integration and potential strategies to address them will also be discussed
Design and characterisation of food grade powders and inks for microstructure control using 3D printing
Additive Manufacturing techniques have been previously applied to food materials with direct consumption in mind, as opposed to creating structural ingredients as shown in this study. First, semi-crystalline cellulose was mechanically treated by ball milling to render an amorphous powder, which has been characterised. Requirements for the subsequent recrystallization of this powder with a view to structuring have been determined through the control of moisture and thermal energy. Food inks based on xanthan gum have been formulated to enable successful jetting with a FujiFilm Dimatix ink jet printer. The polymer inks were subsequently jetted onto the amorphous cellulose powder to observe powder-binder interactions. Material combinations and parameters were optimised to produce cohesive geometric structures. The results of this study are promising when looking towards using these materials in a binder jetting additive manufacturing technique using designer particles and inks to create structures for use in food products
Analgesic and anti-inflammatory drug use and risk of bladder cancer: a population based case control study
Modelling a Historic Oil-Tank Fire Allows an Estimation of the Sensitivity of the Infrared Receptors in Pyrophilous Melanophila Beetles
Pyrophilous jewel beetles of the genus Melanophila approach forest fires and there is considerable evidence that these beetles can detect fires from great distances of more than 60 km. Because Melanophila beetles are equipped with infrared receptors and are also attracted by hot surfaces it can be concluded that these infrared receptors are used for fire detection
Regular use of analgesics is a risk factor for renal cell carcinoma
Phenacetin-based analgesics have been linked to the development of renal pelvis cancer and renal cell carcinoma (RCC). The relationship between non-phenacetin types of analgesics and kidney cancer is less clear, although laboratory evidence suggests that these drugs possess carcinogenic potential. A population-based case–control study involving 1204 non-Asian RCC patients aged 25–74 and an equal number of sex-, age- and race-matched neighbourhood controls was conducted in Los Angeles, California, to investigate the relationship between sustained use of analgesics and risk of RCC according to major formulation categories. Detailed information on medical and medication histories, and other lifestyle factors was collected through in-person interviews. Regular use of analgesics was a significant risk factor for RCC in both men and women (odds ratio (OR) = 1.6, 95% confidence interval (CI) = 1.4–1.9 for both sexes combined). Risks were elevated across all four major classes of analgesics (aspirin, non-steroidal anti-inflammatory agents other than aspirin, acetaminophen and phenacetin). Within each class of analgesics, there was statistically significant increasing risk with increasing level of exposure. Although there was some minor variability by major class of formulation, in general individuals in the highest exposure categories exhibited approximately 2.5-fold increase in risk relative to non- or irregular users of analgesics. Subjects who took one regular-strength (i.e. 325 mg) aspirin a day or less for cardiovascular disease prevention were not at an increased risk of RCC (OR = 0.9, 95% CI = 0.6–1.4). © 1999 Cancer Research Campaig
Descriptive and experimental analysis of the dispersion of neural crest cells along the dorsolateral path and their entry into ectoderm in the chick embryo
We have characterized the dispersion of neural crest cells along the dorsolateral path in the trunk of the chicken embryo and experimentally investigated the control of neural crest cell entry into this path. The distribution of putative neural crest cells was analyzed in plastic sections of embryos that had been incubated for 24 hr in HNK-1 antibody, a procedure that we show successfully labels neural crest cells in the dorsolateral path and ectoderm. In accord with earlier observations, crest cells delay entering the dorsolateral path until a day or more after their counterparts have colonized the ventral path. However, once crest cells enter, they disperse rapidly through the path dorsal to the somite but still delay migrating dorsal to the intersegmental space. During dispersion, crest cells invade the ectoderm at sites associated with local disruptions in the basal lamina which may be caused by crest cells. Finally, deleting the dermamyotome releases an inhibition of neural crest cell migration: crest cells enter the dorsolateral path precociously. We speculate that the epithelial dermatome may transiently produce inhibitory substances and that emerging dermis may provide a long-distance, stimulatory cue.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/30077/1/0000447.pd
Mortality and pulmonary complications in patients undergoing surgery with perioperative SARS-CoV-2 infection: an international cohort study
Background: The impact of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on postoperative recovery needs to be understood to inform clinical decision making during and after the COVID-19 pandemic. This study reports 30-day mortality and pulmonary complication rates in patients with perioperative SARS-CoV-2 infection. Methods: This international, multicentre, cohort study at 235 hospitals in 24 countries included all patients undergoing surgery who had SARS-CoV-2 infection confirmed within 7 days before or 30 days after surgery. The primary outcome measure was 30-day postoperative mortality and was assessed in all enrolled patients. The main secondary outcome measure was pulmonary complications, defined as pneumonia, acute respiratory distress syndrome, or unexpected postoperative ventilation. Findings: This analysis includes 1128 patients who had surgery between Jan 1 and March 31, 2020, of whom 835 (74·0%) had emergency surgery and 280 (24·8%) had elective surgery. SARS-CoV-2 infection was confirmed preoperatively in 294 (26·1%) patients. 30-day mortality was 23·8% (268 of 1128). Pulmonary complications occurred in 577 (51·2%) of 1128 patients; 30-day mortality in these patients was 38·0% (219 of 577), accounting for 81·7% (219 of 268) of all deaths. In adjusted analyses, 30-day mortality was associated with male sex (odds ratio 1·75 [95% CI 1·28–2·40], p\textless0·0001), age 70 years or older versus younger than 70 years (2·30 [1·65–3·22], p\textless0·0001), American Society of Anesthesiologists grades 3–5 versus grades 1–2 (2·35 [1·57–3·53], p\textless0·0001), malignant versus benign or obstetric diagnosis (1·55 [1·01–2·39], p=0·046), emergency versus elective surgery (1·67 [1·06–2·63], p=0·026), and major versus minor surgery (1·52 [1·01–2·31], p=0·047). Interpretation: Postoperative pulmonary complications occur in half of patients with perioperative SARS-CoV-2 infection and are associated with high mortality. Thresholds for surgery during the COVID-19 pandemic should be higher than during normal practice, particularly in men aged 70 years and older. Consideration should be given for postponing non-urgent procedures and promoting non-operative treatment to delay or avoid the need for surgery. Funding: National Institute for Health Research (NIHR), Association of Coloproctology of Great Britain and Ireland, Bowel and Cancer Research, Bowel Disease Research Foundation, Association of Upper Gastrointestinal Surgeons, British Association of Surgical Oncology, British Gynaecological Cancer Society, European Society of Coloproctology, NIHR Academy, Sarcoma UK, Vascular Society for Great Britain and Ireland, and Yorkshire Cancer Research
- …
