43 research outputs found

    Symmetry justification of Lorenz' maximum simplification

    Full text link
    In 1960 Edward Lorenz (1917-2008) published a pioneering work on the `maximum simplification' of the barotropic vorticity equation. He derived a coupled three-mode system and interpreted it as the minimum core of large-scale fluid mechanics on a `finite but unbounded' domain. The model was obtained in a heuristic way, without giving a rigorous justification for the chosen selection of modes. In this paper, it is shown that one can legitimate Lorenz' choice by using symmetry transformations of the spectral form of the vorticity equation. The Lorenz three-mode model arises as the final step in a hierarchy of models constructed via the component reduction by means of symmetries. In this sense, the Lorenz model is indeed the `maximum simplification' of the vorticity equation.Comment: 8 pages, minor correction

    Nonlinear Time Series Analysis of Sunspot Data

    Full text link
    This paper deals with the analysis of sunspot number time series using the Hurst exponent. We use the rescaled range (R/S) analysis to estimate the Hurst exponent for 259-year and 11360-year sunspot data. The results show a varying degree of persistence over shorter and longer time scales corresponding to distinct values of the Hurst exponent. We explain the presence of these multiple Hurst exponents by their resemblance to the deterministic chaotic attractors having multiple centers of rotation.Comment: 10 pages, 6 figures, accepted for publication in Solar Physics, journal style corrections done in this versio

    Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in √s = 7 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for the direct production of charginos and neutralinos in final states with three electrons or muons and missing transverse momentum is presented. The analysis is based on 4.7 fb−1 of proton–proton collision data delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with Standard Model expectations in three signal regions that are either depleted or enriched in Z-boson decays. Upper limits at 95% confidence level are set in R-parity conserving phenomenological minimal supersymmetric models and in simplified models, significantly extending previous results

    Jet size dependence of single jet suppression in lead-lead collisions at sqrt(s(NN)) = 2.76 TeV with the ATLAS detector at the LHC

    Get PDF
    Measurements of inclusive jet suppression in heavy ion collisions at the LHC provide direct sensitivity to the physics of jet quenching. In a sample of lead-lead collisions at sqrt(s) = 2.76 TeV corresponding to an integrated luminosity of approximately 7 inverse microbarns, ATLAS has measured jets with a calorimeter over the pseudorapidity interval |eta| < 2.1 and over the transverse momentum range 38 < pT < 210 GeV. Jets were reconstructed using the anti-kt algorithm with values for the distance parameter that determines the nominal jet radius of R = 0.2, 0.3, 0.4 and 0.5. The centrality dependence of the jet yield is characterized by the jet "central-to-peripheral ratio," Rcp. Jet production is found to be suppressed by approximately a factor of two in the 10% most central collisions relative to peripheral collisions. Rcp varies smoothly with centrality as characterized by the number of participating nucleons. The observed suppression is only weakly dependent on jet radius and transverse momentum. These results provide the first direct measurement of inclusive jet suppression in heavy ion collisions and complement previous measurements of dijet transverse energy imbalance at the LHC.Comment: 15 pages plus author list (30 pages total), 8 figures, 2 tables, submitted to Physics Letters B. All figures including auxiliary figures are available at http://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HION-2011-02

    Insights into the high-energy Îł-ray emission of Markarian 501 from extensive multifrequency observations in the Fermi era

    Get PDF
    We report on the Îł-ray activity of the blazar Mrk 501 during the first 480 days of Fermi operation. We find that the average Large Area Telescope (LAT) Îł-ray spectrum of Mrk 501 can be well described by a single power-law function with a photon index of 1.78 ± 0.03. While we observe relatively mild flux variations with the Fermi-LAT (within less than a factor of two), we detect remarkable spectral variability where the hardest observed spectral index within the LAT energy range is 1.52 ± 0.14, and the softest one is 2.51 ± 0.20. These unexpected spectral changes do not correlate with the measured flux variations above 0.3 GeV. In this paper, we also present the first results from the 4.5 month long multifrequency campaign (2009 March 15-August 1) on Mrk 501, which included the Very Long Baseline Array (VLBA), Swift, RXTE, MAGIC, and VERITAS, the F-GAMMA, GASP-WEBT, and other collaborations and instruments which provided excellent temporal and energy coverage of the source throughout the entire campaign. The extensive radio to TeV data set from this campaign provides us with the most detailed spectral energy distribution yet collected for this source during its relatively low activity. The average spectral energy distribution of Mrk 501 is well described by the standard one-zone synchrotron self-Compton (SSC) model. In the framework of this model, we find that the dominant emission region is characterized by a size â‰Č0.1 pc (comparable within a factor of few to the size of the partially resolved VLBA core at 15-43 GHz), and that the total jet power (≃1044 erg s-1) constitutes only a small fraction (∌10-3) of the Eddington luminosity. The energy distribution of the freshly accelerated radiating electrons required to fit the time-averaged data has a broken power-law form in the energy range 0.3 GeV-10 TeV, with spectral indices 2.2 and 2.7 below and above the break energy of 20 GeV. We argue that such a form is consistent with a scenario in which the bulk of the energy dissipation within the dominant emission zone of Mrk 501 is due to relativistic, proton-mediated shocks. We find that the ultrarelativistic electrons and mildly relativistic protons within the blazar zone, if comparable in number, are in approximate energy equipartition, with their energy dominating the jet magnetic field energy by about two orders of magnitude. © 2011. The American Astronomical Society

    Dhofar 225 and Dhofar 735: Relationship to CM2 chondrites and metamorphosed carbonaceous chondrites, Belgica-7904 and Yamato-86720

    No full text
    Dhofar (Dho) 225 and Dho 735 are carbonaceous chondrites found in a hot desert and having affinities to Belgica-like Antarctic chondrites (Belgica [B-] 7904 and Yamato [Y-] 86720). Texturally they resemble CM2 chondrites, but differ in mineralogy, bulk chemistry and oxygen isotopic compositions. The texture and main mineralogy of Dho 225 and Dho 735 are similar to the CM2 chondrites, but unlike CM2 chondrites they do not contain any (P, Cr)-sulfides, nor tochilinite 6Fe0.9S*5(Fe,Mg)(OH)2. H2O-contents of Dho 225 and Dho 735 (1.76 and 1.06 wt%) are lower than those of CM2 chondrites (2-18 wt%), but similar to those in the metamorphosed carbonaceous chondrites of the Belgica-like group. Bulk compositions of Dho 225 and Dho 735, as well as their matrices, have low Fe and S and low Fe/Si ratios relative to CM2 chondrites. X-ray powder diffraction patterns of the Dho 225 and Dho 735 matrices showed similarities to laboratory-heated Murchison CM2 chondrite and the transformation of serpentine to olivine. Dho 225 and 735's oxygen isotopic compositions are in the high 18O range on the oxygen diagram, close to the Belgica-like meteorites. This differs from the oxygen isotopic compositions of typical CM2 chondrites. Experimental results showed that the oxygen isotopic compositions of Dho 225 and Dhofar 725, could not be derived from those of typical CM2 chondrites via dehydration caused by thermal metamorphism. Dho 225 and Dho 735 may represent a group of chondrites whose primary material was different from typical CM2 chondrites and the Belgica-like meteorites, but they formed in an oxygen reservoir similar to that of the Belgica-like meteorites
    corecore