95 research outputs found
Adhesion, Stiffness and Instability in Atomically Thin MoS2 Bubbles
We measured the work of separation of single and few-layer MoS2 membranes
from a SiOx substrate using a mechanical blister test, and found a value of 220
+- 35 mJ/m^2. Our measurements were also used to determine the 2D Young's
modulus of a single MoS2 layer to be 160 +- 40 N/m. We then studied the
delamination mechanics of pressurized MoS2 bubles, demonstrating both stable
and unstable transitions between the bubbles' laminated and delaminated states
as the bubbles were inflated. When they were deflated, we observed edge pinning
and a snap-in transition which are not accounted for by the previously reported
models. We attribute this result to adhesion hysteresis and use our results to
estimate the work of adhesion of our membranes to be 42 +- 20 mJ/m^2
Band Gap Engineering with Ultralarge Biaxial Strains in Suspended Monolayer MoS2
We demonstrate the continuous and reversible tuning of the optical band gap
of suspended monolayer MoS2 membranes by as much as 500 meV by applying very
large biaxial strains. By using chemical vapor deposition (CVD) to grow
crystals that are highly impermeable to gas, we are able to apply a pressure
difference across suspended membranes to induce biaxial strains. We observe the
effect of strain on the energy and intensity of the peaks in the
photoluminescence (PL) spectrum, and find a linear tuning rate of the optical
band gap of 99 meV/%. This method is then used to study the PL spectra of
bilayer and trilayer devices under strain, and to find the shift rates and
Gr\"uneisen parameters of two Raman modes in monolayer MoS2. Finally, we use
this result to show that we can apply biaxial strains as large as 5.6% across
micron sized areas, and report evidence for the strain tuning of higher level
optical transitions.Comment: Nano Lett., Article ASA
Polariton Nanophotonics using Phase Change Materials
Polaritons formed by the coupling of light and material excitations such as
plasmons, phonons, or excitons enable light-matter interactions at the
nanoscale beyond what is currently possible with conventional optics. Recently,
significant interest has been attracted by polaritons in van der Waals
materials, which could lead to applications in sensing, integrated photonic
circuits and detectors. However, novel techniques are required to control the
propagation of polaritons at the nanoscale and to implement the first practical
devices. Here we report the experimental realization of polariton refractive
and meta-optics in the mid-infrared by exploiting the properties of low-loss
phonon polaritons in isotopically pure hexagonal boron nitride (hBN), which
allow it to interact with the surrounding dielectric environment comprising the
low-loss phase change material, GeSbTe (GST). We demonstrate
waveguides which confine polaritons in a 1D geometry, and refractive optical
elements such as lenses and prisms for phonon polaritons in hBN, which we
characterize using scanning near field optical microscopy. Furthermore, we
demonstrate metalenses, which allow for polariton wavefront engineering and
sub-wavelength focusing. Our method, due to its sub-diffraction and planar
nature, will enable the realization of programmable miniaturized integrated
optoelectronic devices, and will lay the foundation for on-demand biosensors.Comment: 15 pages, 4 figures, typos corrected in v
An estimate of the number of tropical tree species
The high species richness of tropical forests has long been recognized, yet there remains substantial uncertainty regarding the actual number of tropical tree species. Using a pantropical tree inventory database from closed canopy forests, consisting of 657,630 trees belonging to 11,371 species, we use a fitted value of Fisher’s alpha and an approximate pantropical stem total to estimate the minimum number of tropical forest tree species to fall between ∼40,000 and ∼53,000, i.e. at the high end of previous estimates. Contrary to common assumption, the Indo-Pacific region was found to be as species-rich as the Neotropics, with both regions having a minimum of ∼19,000–25,000 tree species. Continental Africa is relatively depauperate with a minimum of ∼4,500–6,000 tree species. Very few species are shared among the African, American, and the Indo-Pacific regions. We provide a methodological framework for estimating species richness in trees that may help refine species richness estimates of tree-dependent taxa
The global abundance of tree palms
Aim Palms are an iconic, diverse and often abundant component of tropical ecosystems that provide many ecosystem services. Being monocots, tree palms are evolutionarily, morphologically and physiologically distinct from other trees, and these differences have important consequences for ecosystem services (e.g., carbon sequestration and storage) and in terms of responses to climate change. We quantified global patterns of tree palm relative abundance to help improve understanding of tropical forests and reduce uncertainty about these ecosystems under climate change. Location Tropical and subtropical moist forests. Time period Current. Major taxa studied Palms (Arecaceae). Methods We assembled a pantropical dataset of 2,548 forest plots (covering 1,191 ha) and quantified tree palm (i.e., ≥10 cm diameter at breast height) abundance relative to co‐occurring non‐palm trees. We compared the relative abundance of tree palms across biogeographical realms and tested for associations with palaeoclimate stability, current climate, edaphic conditions and metrics of forest structure. Results On average, the relative abundance of tree palms was more than five times larger between Neotropical locations and other biogeographical realms. Tree palms were absent in most locations outside the Neotropics but present in >80% of Neotropical locations. The relative abundance of tree palms was more strongly associated with local conditions (e.g., higher mean annual precipitation, lower soil fertility, shallower water table and lower plot mean wood density) than metrics of long‐term climate stability. Life‐form diversity also influenced the patterns; palm assemblages outside the Neotropics comprise many non‐tree (e.g., climbing) palms. Finally, we show that tree palms can influence estimates of above‐ground biomass, but the magnitude and direction of the effect require additional work. Conclusions Tree palms are not only quintessentially tropical, but they are also overwhelmingly Neotropical. Future work to understand the contributions of tree palms to biomass estimates and carbon cycling will be particularly crucial in Neotropical forests
Consistent patterns of common species across tropical tree communities
Trees structure the Earth’s most biodiverse ecosystem, tropical forests. The vast number of tree species presents a formidable challenge to understanding these forests, including their response to environmental change, as very little is known about most tropical tree species. A focus on the common species may circumvent this challenge. Here we investigate abundance patterns of common tree species using inventory data on 1,003,805 trees with trunk diameters of at least 10 cm across 1,568 locations1,2,3,4,5,6 in closed-canopy, structurally intact old-growth tropical forests in Africa, Amazonia and Southeast Asia. We estimate that 2.2%, 2.2% and 2.3% of species comprise 50% of the tropical trees in these regions, respectively. Extrapolating across all closed-canopy tropical forests, we estimate that just 1,053 species comprise half of Earth’s 800 billion tropical trees with trunk diameters of at least 10 cm. Despite differing biogeographic, climatic and anthropogenic histories7, we find notably consistent patterns of common species and species abundance distributions across the continents. This suggests that fundamental mechanisms of tree community assembly may apply to all tropical forests. Resampling analyses show that the most common species are likely to belong to a manageable list of known species, enabling targeted efforts to understand their ecology. Although they do not detract from the importance of rare species, our results open new opportunities to understand the world’s most diverse forests, including modelling their response to environmental change, by focusing on the common species that constitute the majority of their trees.Publisher PDFPeer reviewe
- …