75 research outputs found
Analysis of the cardiovascular risk factors in military above 35 years old
Introduction
The increasing prevalence of cardiovascular risk factors is mainly due to habits acquired during one’s life. However, military training has physical aptitude as one of its main objectives. The objective of the data analysis was to analyze the practiced physical activity, which is the most active age group and if the intensity of the physical activity influences the various parameters being analyzed.
Methodology
This evaluation focuses on some cardiovascular parameters like the incidence of family history, medication, smoking habits and blood pressure/heart frequency measurements; data from blood tests to examine the biochemistry; body composition through weight, height, abdominal perimeter and, through DXA, body fat; and with accelerometry the physical activity level has been determined.
Results
Sedentary physical activity is significantly greater during weekends instead of moderate and intense levels, which occur mainly during work-days.
People who are between 45 and 54 years old are the ones who takes more anticholesterolemic medicine and also the one who show the best HDL values.
The sedentary level of physical activity is positively and directly related with weight, which presents an inverse correlation with moderate physical activity, and also body fat parameters and abdominal perimeter.
The highest prothrombin time levels and sedimentation speed are associated with sedentary physical activity. However, even though HDL levels are significantly greater when intense physical activity is practiced, this also creates higher values of INR. Intense physical activity is also responsible for some ischemic heart disease, reflecting an increase in CK-MB values.
Discussion
The abdominal perimeter proved to be a better predictor of intra-abdominal fat than the BMI. The youngest age group showed really high values of PCR, protein being a contributing factor for heart disease risk (Albert, Glynn & Ridker, 2003). The relation between physical activity and fat was inverse (Cederberg et al, 2011), while HDL results were better as physical activity increased (Gordon-Larsen et al, 2009).
Physical activity intensity above average show little to no benefits (AAdahl, KJæer & Jørgensen, 2007), just like the increase of circulation CK-MB however, sedentary ones showed more changes when it came to coagulation. Balanced physical activity was moderate when it came to benefits/disadvantages
Epidemiology of invasive fungal diseases among patients with haematological disorders in the Asia-Pacific: a prospective observational study
AbstractWe conducted a 2-year multicentre prospective observational study to determine the epidemiology of and mortality associated with invasive fungal diseases (IFDs) among patients with haematological disorders in Asia. Eleven institutions from 8 countries/regions participated, with 412 subjects (28.2% possible, 38.3% probable and 33.5% proven IFDs) recruited. The epidemiology of IFDs in participating institutions was similar to Western centres, with Aspergillus spp. (65.9%) or Candida spp. (26.7%) causing the majority of probable and proven IFDs. The overall 30-day mortality was 22.1%. Progressive haematological disorder (odds ratio [OR] 5.192), invasive candidiasis (OR 3.679), and chronic renal disease (OR 6.677) were independently associated with mortality
Myocardial fibrosis as an early manifestation of hypertrophic cardiomyopathy
BACKGROUND: Myocardial fibrosis is a hallmark of hypertrophic cardiomyopathy and a proposed substrate for arrhythmias and heart failure. In animal models, profibrotic genetic pathways are activated early, before hypertrophic remodeling. Data showing early profibrotic responses to sarcomere-gene mutations in patients with hypertrophic cardiomyopathy are lacking.
METHODS: We used echocardiography, cardiac magnetic resonance imaging (MRI), and serum biomarkers of collagen metabolism, hemodynamic stress, and myocardial injury to evaluate subjects with hypertrophic cardiomyopathy and a confirmed genotype.
RESULTS: The study involved 38 subjects with pathogenic sarcomere mutations and overt hypertrophic cardiomyopathy, 39 subjects with mutations but no left ventricular hypertrophy, and 30 controls who did not have mutations. Levels of serum C-terminal propeptide of type I procollagen (PICP) were significantly higher in mutation carriers without left ventricular hypertrophy and in subjects with overt hypertrophic cardiomyopathy than in controls (31% and 69% higher, respectively; P<0.001). The ratio of PICP to C-terminal telopeptide of type I collagen was increased only in subjects with overt hypertrophic cardiomyopathy, suggesting that collagen synthesis exceeds degradation. Cardiac MRI studies showed late gadolinium enhancement, indicating myocardial fibrosis, in 71% of subjects with overt hypertrophic cardiomyopathy but in none of the mutation carriers without left ventricular hypertrophy.
CONCLUSIONS: Elevated levels of serum PICP indicated increased myocardial collagen synthesis in sarcomere-mutation carriers without overt disease. This profibrotic state preceded the development of left ventricular hypertrophy or fibrosis visible on MRI. (Funded by the National Institutes of Health and others.
Dependence of the emission from tris(8-hydroxyquinoline) aluminum based microcavity on device thickness and the emission layer position
In this work, we present a systematic study of the emission from bilayer organic microcavity light emitting diodes with two metal mirrors. The devices consisting of two organic layers, N,NV-di(naphthalene-1-yl)-N,NV-diphenylbenzidine as the hole transport layer and tris (8-hydroxyquinoline) aluminum as the emitting layer, and two metal mirrors were fabricated and characterized by transmittance, reflectance, photoluminescence, and electroluminescence measurements. The effects of layer thickness, interface position, and the choice of anode(bottom mirror) were investigated. The transmittance and reflectance spectra were modeled using a transfer matrix model, and the optical functions for all the materials used were determined by spectroscopic ellipsometry. The dependence of the photoluminescence and electroluminescence spectra on the device thickness and interface position is discussed
Ischemic Tolerance Protects the Rat Retina from Glaucomatous Damage
Glaucoma is a leading cause of acquired blindness which may involve an ischemic-like insult to retinal ganglion cells and optic nerve head. We investigated the effect of a weekly application of brief ischemia pulses (ischemic conditioning) on the rat retinal damage induced by experimental glaucoma. Glaucoma was induced by weekly injections of chondroitin sulfate (CS) in the rat eye anterior chamber. Retinal ischemia was induced by increasing intraocular pressure to 120 mmHg for 5 min; this maneuver started after 6 weekly injections of vehicle or CS and was weekly repeated in one eye, while the contralateral eye was submitted to a sham procedure. Glaucoma was evaluated in terms of: i) intraocular pressure (IOP), ii) retinal function (electroretinogram (ERG)), iii) visual pathway function (visual evoked potentials, (VEPs)) iv) histology of the retina and optic nerve head. Retinal thiobarbituric acid substances levels were assessed as an index of lipid peroxidation. Ischemic conditioning significantly preserved ERG, VEPs, as well as retinal and optic nerve head structure from glaucomatous damage, without changes in IOP. Moreover, ischemia pulses abrogated the increase in lipid peroxidation induced by experimental glaucoma. These results indicate that induction of ischemic tolerance could constitute a fertile avenue for the development of new therapeutic strategies in glaucoma treatment
Heavy quarkonium: progress, puzzles, and opportunities
A golden age for heavy quarkonium physics dawned a decade ago, initiated by
the confluence of exciting advances in quantum chromodynamics (QCD) and an
explosion of related experimental activity. The early years of this period were
chronicled in the Quarkonium Working Group (QWG) CERN Yellow Report (YR) in
2004, which presented a comprehensive review of the status of the field at that
time and provided specific recommendations for further progress. However, the
broad spectrum of subsequent breakthroughs, surprises, and continuing puzzles
could only be partially anticipated. Since the release of the YR, the BESII
program concluded only to give birth to BESIII; the -factories and CLEO-c
flourished; quarkonium production and polarization measurements at HERA and the
Tevatron matured; and heavy-ion collisions at RHIC have opened a window on the
deconfinement regime. All these experiments leave legacies of quality,
precision, and unsolved mysteries for quarkonium physics, and therefore beg for
continuing investigations. The plethora of newly-found quarkonium-like states
unleashed a flood of theoretical investigations into new forms of matter such
as quark-gluon hybrids, mesonic molecules, and tetraquarks. Measurements of the
spectroscopy, decays, production, and in-medium behavior of c\bar{c}, b\bar{b},
and b\bar{c} bound states have been shown to validate some theoretical
approaches to QCD and highlight lack of quantitative success for others. The
intriguing details of quarkonium suppression in heavy-ion collisions that have
emerged from RHIC have elevated the importance of separating hot- and
cold-nuclear-matter effects in quark-gluon plasma studies. This review
systematically addresses all these matters and concludes by prioritizing
directions for ongoing and future efforts.Comment: 182 pages, 112 figures. Editors: N. Brambilla, S. Eidelman, B. K.
Heltsley, R. Vogt. Section Coordinators: G. T. Bodwin, E. Eichten, A. D.
Frawley, A. B. Meyer, R. E. Mitchell, V. Papadimitriou, P. Petreczky, A. A.
Petrov, P. Robbe, A. Vair
T1 measurements identify extracellular volume expansion in hypertrophic cardiomyopathy sarcomere mutation carriers with and without left ventricular hypertrophy
Background—Myocardial fibrosis is a hallmark of hypertrophic cardiomyopathy (HCM) and a potential substrate for arrhythmias and heart failure. Sarcomere mutations seem to induce profibrotic changes before left ventricular hypertrophy (LVH) develops. To further evaluate these processes, we used cardiac magnetic resonance with T1 measurements on a genotyped HCM population to quantify myocardial extracellular volume (ECV).
Methods and Results—Sarcomere mutation carriers with LVH (G+/LVH+, n=37) and without LVH (G+/LVH−, n=29), patients with HCM without mutations (sarcomere-negative HCM, n=11), and healthy controls (n=11) underwent contrast cardiac magnetic resonance, measuring T1 times pre- and postgadolinium infusion. Concurrent echocardiography and serum biomarkers of collagen synthesis, hemodynamic stress, and myocardial injury were also available in a subset. Compared with controls, ECV was increased in patients with overt HCM, as well as G+/LVH− mutation carriers (ECV=0.36±0.01, 0.33±0.01, 0.27±0.01 in G+/LVH+, G+/LVH−, controls, respectively; P≤0.001 for all comparisons). ECV correlated with N-terminal probrain natriuretic peptide levels (r=0.58; P60% of overt patients with HCM but absent from G+/LVH− subjects. Both ECV and late gadolinium enhancement were more extensive in sarcomeric HCM than sarcomere-negative HCM.
Conclusions—Myocardial ECV is increased in HCM sarcomere mutation carriers even in the absence of LVH. These data provide additional support that fibrotic remodeling is triggered early in disease pathogenesis. Quantifying ECV may help characterize the development of myocardial fibrosis in HCM and ultimately assist in developing novel disease-modifying therapy, targeting interstitial fibrosis
Identification of independent association signals and putative functional variants for breast cancer risk through fine-scale mapping of the 12p11 locus.
BACKGROUND: Multiple recent genome-wide association studies (GWAS) have identified a single nucleotide polymorphism (SNP), rs10771399, at 12p11 that is associated with breast cancer risk. METHOD: We performed a fine-scale mapping study of a 700 kb region including 441 genotyped and more than 1300 imputed genetic variants in 48,155 cases and 43,612 controls of European descent, 6269 cases and 6624 controls of East Asian descent and 1116 cases and 932 controls of African descent in the Breast Cancer Association Consortium (BCAC; http://bcac.ccge.medschl.cam.ac.uk/ ), and in 15,252 BRCA1 mutation carriers in the Consortium of Investigators of Modifiers of BRCA1/2 (CIMBA). Stepwise regression analyses were performed to identify independent association signals. Data from the Encyclopedia of DNA Elements project (ENCODE) and the Cancer Genome Atlas (TCGA) were used for functional annotation. RESULTS: Analysis of data from European descendants found evidence for four independent association signals at 12p11, represented by rs7297051 (odds ratio (OR) = 1.09, 95 % confidence interval (CI) = 1.06-1.12; P = 3 × 10(-9)), rs805510 (OR = 1.08, 95 % CI = 1.04-1.12, P = 2 × 10(-5)), and rs1871152 (OR = 1.04, 95 % CI = 1.02-1.06; P = 2 × 10(-4)) identified in the general populations, and rs113824616 (P = 7 × 10(-5)) identified in the meta-analysis of BCAC ER-negative cases and BRCA1 mutation carriers. SNPs rs7297051, rs805510 and rs113824616 were also associated with breast cancer risk at P < 0.05 in East Asians, but none of the associations were statistically significant in African descendants. Multiple candidate functional variants are located in putative enhancer sequences. Chromatin interaction data suggested that PTHLH was the likely target gene of these enhancers. Of the six variants with the strongest evidence of potential functionality, rs11049453 was statistically significantly associated with the expression of PTHLH and its nearby gene CCDC91 at P < 0.05. CONCLUSION: This study identified four independent association signals at 12p11 and revealed potentially functional variants, providing additional insights into the underlying biological mechanism(s) for the association observed between variants at 12p11 and breast cancer risk.UK funding includes Cancer Research UK and NIH.This is the final version of the article. It first appeared from BioMed Central via http://dx.doi.org/10.1186/s13058-016-0718-
Molecular analysis of the pRA2 partitioning region: ParB autoregulates parAB transcription and forms a nucleoprotein complex with the plasmid partition site, parS
10.1046/j.1365-2958.2001.02405.xMolecular Microbiology403621-633MOMI
- …