641 research outputs found

    The Effectiveness of Greenhouse Gas Abatement Strategies for the Dairy Industry in South-Western Victoria, Australia

    Get PDF
    In Australia, the dairy industry generates 8.9 million tonnes of carbon dioxide equivalents (t CO2e) per year (Christie et al. 2011). Most greenhouse gas (GHG) emissions from the dairy sector are high global warming potential gases such as methane (CH4) from enteric fermentation and nitrous oxide (N2O) from cattle urine and nitrogen (N) based fertilizers, contributing to climate change issues. Several GHG abatement options are available to dairy farmers, including increasing diet quality, feeding oils and reducing replacement rates (Eckard et al. 2010), but little assessment of their effectiveness has been carried out at a farm system level. The two objectives of this study were: first, to quantify GHG emissions from pasture-based dairy production systems in southwestern Victoria; second, to identify GHG abatement strategies and examining their effects on reducing farm emissions

    Spatial and temporal projections of the prevalence of active tuberculosis in Cambodia.

    Get PDF
    INTRODUCTION: Cambodia is among the 30 highest burden of tuberculosis (TB) countries. Active TB prevalence has been estimated using nationally representative multistage sampling that represents urban, rural and remote parts of the country, but the prevalence in non-sampled communes remains unknown. This study uses geospatial Bayesian statistics to estimate point prevalence across Cambodia, and demographic modelling that accounts for secular trends in fertility, mortality, urbanisation and prevalence rates to project the future burden of active TB. METHODS: A Bayesian hierarchical model was developed for the 2011 National Tuberculosis Prevalence survey to estimate the differential effect of age, sex and geographic stratum on active TB prevalence; these estimates were then married with high-resolution geographic information system layers to project prevalence across Cambodia. Future TB projections under alternative scenarios were then derived by interfacing these estimates with an individual-based demographic model. RESULTS: Strong differences in risk by age and sex, together with geographically varying population structures, yielded the first estimated prevalence map at a 1 km scale. The projected number of active TB cases within the catchment area of each existing government healthcare facility was derived, together with projections to the year 2030 under three scenarios: no future improvement, c ontinual r eduction and GDP projection. CONCLUSION: Synthesis of health and geographic data allows likely disease rates to be mapped at a high resolution to facilitate resource planning, while demographic modelling allows scenarios to be projected, demonstrating the need for the acceleration of control efforts to achieve a substantive impact on the future burden of TB in Cambodia

    Potential of Core-Collapse Supernova Neutrino Detection at JUNO

    Get PDF
    JUNO is an underground neutrino observatory under construction in Jiangmen, China. It uses 20kton liquid scintillator as target, which enables it to detect supernova burst neutrinos of a large statistics for the next galactic core-collapse supernova (CCSN) and also pre-supernova neutrinos from the nearby CCSN progenitors. All flavors of supernova burst neutrinos can be detected by JUNO via several interaction channels, including inverse beta decay, elastic scattering on electron and proton, interactions on C12 nuclei, etc. This retains the possibility for JUNO to reconstruct the energy spectra of supernova burst neutrinos of all flavors. The real time monitoring systems based on FPGA and DAQ are under development in JUNO, which allow prompt alert and trigger-less data acquisition of CCSN events. The alert performances of both monitoring systems have been thoroughly studied using simulations. Moreover, once a CCSN is tagged, the system can give fast characterizations, such as directionality and light curve

    Detection of the Diffuse Supernova Neutrino Background with JUNO

    Get PDF
    As an underground multi-purpose neutrino detector with 20 kton liquid scintillator, Jiangmen Underground Neutrino Observatory (JUNO) is competitive with and complementary to the water-Cherenkov detectors on the search for the diffuse supernova neutrino background (DSNB). Typical supernova models predict 2-4 events per year within the optimal observation window in the JUNO detector. The dominant background is from the neutral-current (NC) interaction of atmospheric neutrinos with 12C nuclei, which surpasses the DSNB by more than one order of magnitude. We evaluated the systematic uncertainty of NC background from the spread of a variety of data-driven models and further developed a method to determine NC background within 15\% with {\it{in}} {\it{situ}} measurements after ten years of running. Besides, the NC-like backgrounds can be effectively suppressed by the intrinsic pulse-shape discrimination (PSD) capabilities of liquid scintillators. In this talk, I will present in detail the improvements on NC background uncertainty evaluation, PSD discriminator development, and finally, the potential of DSNB sensitivity in JUNO

    Multi-messenger observations of a binary neutron star merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta

    Multi-messenger Observations of a Binary Neutron Star Merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ∼ 1.7 {{s}} with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of {40}-8+8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 {M}ȯ . An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ∼ 40 {{Mpc}}) less than 11 hours after the merger by the One-Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ∼10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ∼ 9 and ∼ 16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC 4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta.</p

    Validation of the Applicability of the Traditional Chinese Version of the University of Pennsylvania Smell Identification Test in Patients with Chronic Rhinosinusitis

    No full text
    The 40-item University of Pennsylvania Smell Identification Test (UPSIT) is the most widely used smell test in the world. Presently, culturally modified versions of this test are available in multiple languages. A traditional Chinese version of the UPSIT (UPSIT-TC) has been developed for administration in Taiwan. The purpose of this study was to investigate the validity and reliability of the UPSIT-TC in Taiwanese patients with chronic rhinosinusitis (CRS). The phenylethyl alcohol (PEA) odor detection threshold test, the North American version of UPSIT (UPSIT-NA), and the UPSIT-TC were administered to 40 healthy subjects and to 100 CRS patients before and after functional endoscopic sinus surgery (FESS). The UPSIT-TC showed good internal consistency (Cronbach's alpha = 0.887, 0.886, and 0.870 at three test occasions) and test-retest reliability (p < 0.001). The scores of UPSIT-TC were significantly correlated to the PEA thresholds (p < 0.001). The UPSIT-TC scores were significantly higher than those of the UPSIT-NA (p = 0.028) when analysis was performed with logistic regression with independent variables including test occasions (before or after FESS), test methods (UPSIT-NA or UPSIT-TC), status of polyp (with or without), and PEA thresholds (improved or did not improve). In addition, there were significant between-group differences in UPSIT-TC scores including healthy versus CRS, CRS with polyps versus CRS without polyps, and PEA thresholds improved versus PEA thresholds which did not improve. The UPSIT-TC is reliable and valid for measuring olfactory function in Taiwanese patients with rhinosinusitis. In addition, the UPSIT-TC clearly resulted in better performance than that of UPSIT-NA

    Comparing Multiple Linear Regression and Machine Learning in Predicting Diabetic Urine Albumin&ndash;Creatinine Ratio in a 4-Year Follow-Up Study

    No full text
    The urine albumin&ndash;creatinine ratio (uACR) is a warning for the deterioration of renal function in type 2 diabetes (T2D). The early detection of ACR has become an important issue. Multiple linear regression (MLR) has traditionally been used to explore the relationships between risk factors and endpoints. Recently, machine learning (ML) methods have been widely applied in medicine. In the present study, four ML methods were used to predict the uACR in a T2D cohort. We hypothesized that (1) ML outperforms traditional MLR and (2) different ranks of the importance of the risk factors will be obtained. A total of 1147 patients with T2D were followed up for four years. MLR, classification and regression tree, random forest, stochastic gradient boosting, and eXtreme gradient boosting methods were used. Our findings show that the prediction errors of the ML methods are smaller than those of MLR, which indicates that ML is more accurate. The first six most important factors were baseline creatinine level, systolic and diastolic blood pressure, glycated hemoglobin, and fasting plasma glucose. In conclusion, ML might be more accurate in predicting uACR in a T2D cohort than the traditional MLR, and the baseline creatinine level is the most important predictor, which is followed by systolic and diastolic blood pressure, glycated hemoglobin, and fasting plasma glucose in Chinese patients with T2D
    corecore