198 research outputs found

    Optimasi Portofolio Resiko Menggunakan Model Markowitz MVO Dikaitkan dengan Keterbatasan Manusia dalam Memprediksi Masa Depan dalam Perspektif Al-Qur`an

    Full text link
    Risk portfolio on modern finance has become increasingly technical, requiring the use of sophisticated mathematical tools in both research and practice. Since companies cannot insure themselves completely against risk, as human incompetence in predicting the future precisely that written in Al-Quran surah Luqman verse 34, they have to manage it to yield an optimal portfolio. The objective here is to minimize the variance among all portfolios, or alternatively, to maximize expected return among all portfolios that has at least a certain expected return. Furthermore, this study focuses on optimizing risk portfolio so called Markowitz MVO (Mean-Variance Optimization). Some theoretical frameworks for analysis are arithmetic mean, geometric mean, variance, covariance, linear programming, and quadratic programming. Moreover, finding a minimum variance portfolio produces a convex quadratic programming, that is minimizing the objective function ðð¥with constraintsð ð 𥠥 ðandð´ð¥ = ð. The outcome of this research is the solution of optimal risk portofolio in some investments that could be finished smoothly using MATLAB R2007b software together with its graphic analysis

    Search for heavy resonances decaying to two Higgs bosons in final states containing four b quarks

    Get PDF
    A search is presented for narrow heavy resonances X decaying into pairs of Higgs bosons (H) in proton-proton collisions collected by the CMS experiment at the LHC at root s = 8 TeV. The data correspond to an integrated luminosity of 19.7 fb(-1). The search considers HH resonances with masses between 1 and 3 TeV, having final states of two b quark pairs. Each Higgs boson is produced with large momentum, and the hadronization products of the pair of b quarks can usually be reconstructed as single large jets. The background from multijet and t (t) over bar events is significantly reduced by applying requirements related to the flavor of the jet, its mass, and its substructure. The signal would be identified as a peak on top of the dijet invariant mass spectrum of the remaining background events. No evidence is observed for such a signal. Upper limits obtained at 95 confidence level for the product of the production cross section and branching fraction sigma(gg -> X) B(X -> HH -> b (b) over barb (b) over bar) range from 10 to 1.5 fb for the mass of X from 1.15 to 2.0 TeV, significantly extending previous searches. For a warped extra dimension theory with amass scale Lambda(R) = 1 TeV, the data exclude radion scalar masses between 1.15 and 1.55 TeV

    Search for supersymmetry in events with one lepton and multiple jets in proton-proton collisions at root s=13 TeV

    Get PDF
    Peer reviewe

    Measurement of the top quark mass using charged particles in pp collisions at root s=8 TeV

    Get PDF
    Peer reviewe

    Search for anomalous couplings in boosted WW/WZ -> l nu q(q)over-bar production in proton-proton collisions at root s=8TeV

    Get PDF
    Peer reviewe

    Are radiological diagnostic centres ready to tackle COVID-19 pandemic? An Indian perspective

    No full text
    Corona virus disease 2019 (COVID-19) is caused by severe acute respiratory coronavirus 2 (SARS-CoV-2) and has been declared as pandemic. Its transmission is mainly by droplets and touching infected surfaces. Health care workers including personnel working at diagnostic centers are more prone to contact the disease through infected patients and hence various precautionary measures have to be implemented which has been discussed in this article. This manuscript shall brief about the preparedness by the diagnostic center in terms of the modification in the work flow, the precautions and protections to be taken by the personnel and patients, disinfection of the equipment and surfaces, and new norms of social distancing. This article will be addressing mainly to the diagnostic centers and the changes to be made as per their convenience

    Microwave ablation: How we do it?

    No full text
    Minimally invasive techniques such as Image guided thermal ablation are now widely used in the treatment of tumors. Microwave ablation (MWA) is one of the newer modality of thermal ablation and has proven its safety and efficacy in the management of the tumors amenable for ablation for primary and metastatic diseases. It is used in the treatment of primary and secondary liver malignancies, primary and secondary lung malignancies, renal and adrenal tumors and bone metastases. We wanted to share our initial experience with this newer modality. In this article we will describe the mechanism and technique of MWA, comparison done with RFA, advantages and disadvantages of MWA along with pre procedure workup, post procedure follow-up and review of literature

    Percutaneous repair of iatrogenic subclavian artery injury by suture-mediated closure device

    No full text
    Central venous catheterization through internal jugular vein is done routinely in intensive care units. It is generally safe, more so when the procedure is performed under ultrasound guidance. However, there could be inadvertent puncture of other vessels in the neck when the procedure is not performed under real-time sonographic guidance. Closure of this vessel opening can pose a challenge if it is an artery, in a location difficult to compress, and is further complicated by deranged coagulation profile. Here, we discuss the removal of an inadvertently placed catheter from subclavian artery with closure of arteriotomy percutaneously using arterial suture-mediated closure device

    Measurement of the production cross section of the W boson in association with two b jets in pp collisions at \sqrt{s} = 8{\,\mathrm{{TeV}}}

    No full text
    corecore