208 research outputs found
The Effects of Gravity on the Climate and Circulation of a Terrestrial Planet
The climate and circulation of a terrestrial planet are governed by, among
other things, the distance to its host star, its size, rotation rate,
obliquity, atmospheric composition and gravity. Here we explore the effects of
the last of these, the Newtonian gravitational acceleration, on its atmosphere
and climate. We first demonstrate that if the atmosphere obeys the hydrostatic
primitive equations, which are a very good approximation for most terrestrial
atmospheres, and if the radiative forcing is unaltered, changes in gravity have
no effect at all on the circulation except for a vertical rescaling. That is to
say, the effects of gravity may be completely scaled away and the circulation
is unaltered. However, if the atmosphere contains a dilute condensible that is
radiatively active, such as water or methane, then an increase in gravity will
generally lead to a cooling of the planet because the total path length of the
condensible will be reduced as gravity increases, leading to a reduction in the
greenhouse effect. Furthermore, the specific humidity will decrease, leading to
changes in the moist adiabatic lapse rate, in the equator-to-pole heat
transport, and in the surface energy balance because of changes in the sensible
and latent fluxes. These effects are all demonstrated both by theoretical
arguments and by numerical simulations with moist and dry general circulation
models.Comment: 17 pages, 9 figures. Submitted to QJRMS on 23/01/1
Derivation of some translation-invariant Lindblad equations for a quantum Brownian particle
We study the dynamics of a Brownian quantum particle hopping on an infinite
lattice with a spin degree of freedom. This particle is coupled to free boson
gases via a translation-invariant Hamiltonian which is linear in the creation
and annihilation operators of the bosons. We derive the time evolution of the
reduced density matrix of the particle in the van Hove limit in which we also
rescale the hopping rate. This corresponds to a situation in which both the
system-bath interactions and the hopping between neighboring sites are small
and they are effective on the same time scale. The reduced evolution is given
by a translation-invariant Lindblad master equation which is derived
explicitly.Comment: 28 pages, 4 figures, minor revisio
Robustness of Decoherence-Free Subspaces for Quantum Computation
It was shown recently [D.A. Lidar et al., Phys. Rev. Lett. 81, 2594 (1998)]
that within the framework of the semigroup Markovian master equation,
decoherence-free (DF) subspaces exist which are stable to first order in time
to a perturbation. Here this result is extended to the non-Markovian regime and
generalized. In particular, it is shown that within both the semigroup and the
non-Markovian operator sum representation, DF subspaces are stable to all
orders in time to a symmetry-breaking perturbation. DF subspaces are thus ideal
for quantum memory applications. For quantum computation, however, the
stability result does not extend beyond the first order. Thus, to perform
robust quantum computation in DF subspaces, they must be supplemented with
quantum error correcting codes.Comment: 16 pages, no figures. Several changes, including a clarification of
the derivation of the Lindblad equation from the operator sum representation.
To appear in Phys. Rev
Following the Nonthermal Phase Transition in Niobium Dioxide by Time-Resolved Harmonic Spectroscopy
Photoinduced phase transitions in correlated materials promise diverse applications from ultrafast switches to optoelectronics. Resolving those transitions and possible metastable phases temporally are key enablers for these applications, but challenge existing experimental approaches. Extreme nonlinear optics can help probe phase changes, as higher-order nonlinearities have higher sensitivity and temporal resolution to band structure and lattice deformations. Here the ultrafast transition from the semiconducting to the metallic phases in polycrystalline thin-film NbO2 is investigated by time-resolved harmonic spectroscopy. The emission strength of all harmonic orders shows a steplike suppression when the excitation fluence exceeds a threshold (∼11-12 mJ/cm2), below the fluence required for the thermal transition - a signature of the nonthermal emergence of a metallic phase within 100 ± 20 fs. This observation is backed by full ab initio simulations as well as a 1D chain model of high-harmonic generation from both phases. Our results demonstrate femtosecond harmonic probing of phase transitions and nonthermal dynamics in solids.</p
On the complementarity of the quadrature observables
In this paper we investigate the coupling properties of pairs of quadrature
observables, showing that, apart from the Weyl relation, they share the same
coupling properties as the position-momentum pair. In particular, they are
complementary. We determine the marginal observables of a covariant phase space
observable with respect to an arbitrary rotated reference frame, and observe
that these marginal observables are unsharp quadrature observables. The related
distributions constitute the Radon tranform of a phase space distribution of
the covariant phase space observable. Since the quadrature distributions are
the Radon transform of the Wigner function of a state, we also exhibit the
relation between the quadrature observables and the tomography observable, and
show how to construct the phase space observable from the quadrature
observables. Finally, we give a method to measure together with a single
measurement scheme any complementary pair of quadrature observables.Comment: Dedicated to Peter Mittelstaedt in honour of his eightieth birthda
Active Galactic Nuclei at the Crossroads of Astrophysics
Over the last five decades, AGN studies have produced a number of spectacular
examples of synergies and multifaceted approaches in astrophysics. The field of
AGN research now spans the entire spectral range and covers more than twelve
orders of magnitude in the spatial and temporal domains. The next generation of
astrophysical facilities will open up new possibilities for AGN studies,
especially in the areas of high-resolution and high-fidelity imaging and
spectroscopy of nuclear regions in the X-ray, optical, and radio bands. These
studies will address in detail a number of critical issues in AGN research such
as processes in the immediate vicinity of supermassive black holes, physical
conditions of broad-line and narrow-line regions, formation and evolution of
accretion disks and relativistic outflows, and the connection between nuclear
activity and galaxy evolution.Comment: 16 pages, 5 figures; review contribution; "Exploring the Cosmic
Frontier: Astrophysical Instruments for the 21st Century", ESO Astrophysical
Symposia Serie
Heavy quarkonia in a medium as a quantum dissipative system: Master-equation approach
The problem of the evolution of a heavy quarkonium in a medium can be recast
as that of a quantum dissipative system. Within the framework of the
master-equation approach to open quantum systems, we consider the real-time
dynamics of quarkonia. We find that in a plasma at fixed temperature, the
populations of the various quarkonium states evolve together, while their
momentum distribution satisfies a Fokker-Planck equation.Comment: 12 pages, 8 figures. Version 2 matches the published versio
Jet size dependence of single jet suppression in lead-lead collisions at sqrt(s(NN)) = 2.76 TeV with the ATLAS detector at the LHC
Measurements of inclusive jet suppression in heavy ion collisions at the LHC
provide direct sensitivity to the physics of jet quenching. In a sample of
lead-lead collisions at sqrt(s) = 2.76 TeV corresponding to an integrated
luminosity of approximately 7 inverse microbarns, ATLAS has measured jets with
a calorimeter over the pseudorapidity interval |eta| < 2.1 and over the
transverse momentum range 38 < pT < 210 GeV. Jets were reconstructed using the
anti-kt algorithm with values for the distance parameter that determines the
nominal jet radius of R = 0.2, 0.3, 0.4 and 0.5. The centrality dependence of
the jet yield is characterized by the jet "central-to-peripheral ratio," Rcp.
Jet production is found to be suppressed by approximately a factor of two in
the 10% most central collisions relative to peripheral collisions. Rcp varies
smoothly with centrality as characterized by the number of participating
nucleons. The observed suppression is only weakly dependent on jet radius and
transverse momentum. These results provide the first direct measurement of
inclusive jet suppression in heavy ion collisions and complement previous
measurements of dijet transverse energy imbalance at the LHC.Comment: 15 pages plus author list (30 pages total), 8 figures, 2 tables,
submitted to Physics Letters B. All figures including auxiliary figures are
available at
http://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HION-2011-02
Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in √s = 7 TeV pp collisions with the ATLAS detector
A search for the direct production of charginos and neutralinos in final states with three electrons or muons and missing transverse momentum is presented. The analysis is based on 4.7 fb−1 of proton–proton collision data delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with Standard Model expectations in three signal regions that are either depleted or enriched in Z-boson decays. Upper limits at 95% confidence level are set in R-parity conserving phenomenological minimal supersymmetric models and in simplified models, significantly extending previous results
The delivery of personalised, precision medicines via synthetic proteins
Introduction:
The design of advanced drug delivery systems based on synthetic and su-pramolecular chemistry has been very successful. Liposomal doxorubicin (Caelyx®), and liposomal daunorubicin (DaunoXome®), estradiol topical emulsion (EstrasorbTM) as well as soluble or erodible polymer systems such as pegaspargase (Oncaspar®) or goserelin acetate (Zoladex®) represent considerable achievements.
The Problem:
As deliverables have evolved from low molecular weight drugs to biologics (currently representing approximately 30% of the market), so too have the demands made of advanced drug delivery technology. In parallel, the field of membrane trafficking (and endocytosis) has also matured. The trafficking of specific receptors i.e. material to be recycled or destroyed, as well as the trafficking of protein toxins has been well characterized. This, in conjunction with an ability to engineer synthetic, recombinant proteins provides several possibilities.
The Solution:
The first is using recombinant proteins as drugs i.e. denileukin diftitox (Ontak®) or agalsidase beta (Fabrazyme®). The second is the opportunity to use protein toxin architecture to reach targets that are not normally accessible. This may be achieved by grafting regulatory domains from multiple species to form synthetic proteins, engineered to do multiple jobs. Examples include access to the nucleocytosolic compartment. Herein the use of synthetic proteins for drug delivery has been reviewed
- …