36 research outputs found
Multi-messenger observations of a binary neutron star merger
On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta
Solitary splenic metastasis from nasopharyngeal carcinoma: a case report and systematic review of the literature
Background: Solitary splenic metastases are a rare occurrence, and the nasopharyngeal carcinoma represents one of the most uncommon primary sources. The present study aimed to describe a rare case of a solitary single splenic metastasis from nasopharyngeal carcinoma and to assess the number of cases of isolated nasopharyngeal carcinoma metastases to the spleen reported in the literature. Main body: We describe the case of a 56-year-old man with a history of nasopharyngeal carcinoma and complete remission after chemo-radiotherapy. Three months after complete remission, positron emission tomography/ computed tomography scan revealed a hypermetabolic splenic lesion without increased metabolic activity in other areas. After laparoscopic splenectomy, the pathology report confirmed a single splenic metastasis from undifferentiated carcinoma of the nasopharyngeal type. The postoperative period was uneventful. We also performed a systematic review of the literature using MEDLINE and Google Scholar databases. All articles reporting cases of splenic metastases from nasopharyngeal carcinoma, with or without histologic confirmation, were evaluated. The literature search yielded 15 relevant articles, which were very heterogeneous in their aims and methods and described only 25 cases of splenic metastases from nasopharyngeal carcinoma. Conclusion: The present review shows that solitary splenic metastases from nasopharyngeal carcinoma are a rare event, but it should be considered in patients presenting with splenic lesions at imaging and a history of primary or recurrent nasopharyngeal carcinoma. No evidence supports a negative impact of splenectomy in patients with solitary splenic metastasis from nasopharyngeal carcinoma
Nanopatterning self-assembled nanoparticle superlattices by moulding microdroplets
Highly ordered arrays of nanoparticles exhibit many properties that are not found in their disordered counterparts. However, these nanoparticle superlattices usually form in a far-from-equilibrium dewetting process, which precludes the use of conventional patterning methods owing to a lack of control over the local dewetting dynamics. Here, we report a simple yet efficient approach for patterning such superlattices that involves moulding microdroplets containing the nanoparticles and spatially regulating their dewetting process. This approach can provide rational control over the local nucleation and growth of the nanoparticle superlattices. Using DNA-capped gold nanoparticles as a model system, we have patterned nanoparticle superlattices over large areas into a number of versatile structures with high degrees of internal order, including single-particle-width corrals, single-particle-thickness microdiscs and submicrometre-sized 'supra-crystals'. Remarkably, these features could be addressed by micropatterned electrode arrays, suggesting potential applications in bottom-up nanodevices