9 research outputs found

    Bridge to the future: Important lessons from 20 years of ecosystem observations made by the OzFlux network

    Get PDF
    In 2020, the Australian and New Zealand flux research and monitoring network, OzFlux, celebrated its 20th anniversary by reflecting on the lessons learned through two decades of ecosystem studies on global change biology. OzFlux is a network not only for ecosystem researchers, but also for those ‘next users’ of the knowledge, information and data that such networks provide. Here, we focus on eight lessons across topics of climate change and variability, disturbance and resilience, drought and heat stress and synergies with remote sensing and modelling. In distilling the key lessons learned, we also identify where further research is needed to fill knowledge gaps and improve the utility and relevance of the outputs from OzFlux. Extreme climate variability across Australia and New Zealand (droughts and flooding rains) provides a natural laboratory for a global understanding of ecosystems in this time of accelerating climate change. As evidence of worsening global fire risk emerges, the natural ability of these ecosystems to recover from disturbances, such as fire and cyclones, provides lessons on adaptation and resilience to disturbance. Drought and heatwaves are common occurrences across large parts of the region and can tip an ecosystem's carbon budget from a net CO2 sink to a net CO2 source. Despite such responses to stress, ecosystems at OzFlux sites show their resilience to climate variability by rapidly pivoting back to a strong carbon sink upon the return of favourable conditions. Located in under-represented areas, OzFlux data have the potential for reducing uncertainties in global remote sensing products, and these data provide several opportunities to develop new theories and improve our ecosystem models. The accumulated impacts of these lessons over the last 20 years highlights the value of long-term flux observations for natural and managed systems. A future vision for OzFlux includes ongoing and newly developed synergies with ecophysiologists, ecologists, geologists, remote sensors and modellers.</p

    Bridge to the future: Important lessons from 20 years of ecosystem observations made by the OzFlux network

    Get PDF
    In 2020, the Australian and New Zealand flux research and monitoring network, OzFlux, celebrated its 20th anniversary by reflecting on the lessons learned through two decades of ecosystem studies on global change biology. OzFlux is a network not only for ecosystem researchers, but also for those ‘next users’ of the knowledge, information and data that such networks provide. Here, we focus on eight lessons across topics of climate change and variability, disturbance and resilience, drought and heat stress and synergies with remote sensing and modelling. In distilling the key lessons learned, we also identify where further research is needed to fill knowledge gaps and improve the utility and relevance of the outputs from OzFlux. Extreme climate variability across Australia and New Zealand (droughts and flooding rains) provides a natural laboratory for a global understanding of ecosystems in this time of accelerating climate change. As evidence of worsening global fire risk emerges, the natural ability of these ecosystems to recover from disturbances, such as fire and cyclones, provides lessons on adaptation and resilience to disturbance. Drought and heatwaves are common occurrences across large parts of the region and can tip an ecosystem\u27s carbon budget from a net CO2 sink to a net CO2 source. Despite such responses to stress, ecosystems at OzFlux sites show their resilience to climate variability by rapidly pivoting back to a strong carbon sink upon the return of favourable conditions. Located in under-represented areas, OzFlux data have the potential for reducing uncertainties in global remote sensing products, and these data provide several opportunities to develop new theories and improve our ecosystem models. The accumulated impacts of these lessons over the last 20 years highlights the value of long-term flux observations for natural and managed systems. A future vision for OzFlux includes ongoing and newly developed synergies with ecophysiologists, ecologists, geologists, remote sensors and modellers

    Author Correction: The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data

    Get PDF

    The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data

    Get PDF
    The FLUXNET2015 dataset provides ecosystem-scale data on CO2, water, and energy exchange between the biosphere and the atmosphere, and other meteorological and biological measurements, from 212 sites around the globe (over 1500 site-years, up to and including year 2014). These sites, independently managed and operated, voluntarily contributed their data to create global datasets. Data were quality controlled and processed using uniform methods, to improve consistency and intercomparability across sites. The dataset is already being used in a number of applications, including ecophysiology studies, remote sensing studies, and development of ecosystem and Earth system models. FLUXNET2015 includes derived-data products, such as gap-filled time series, ecosystem respiration and photosynthetic uptake estimates, estimation of uncertainties, and metadata about the measurements, presented for the first time in this paper. In addition, 206 of these sites are for the first time distributed under a Creative Commons (CC-BY 4.0) license. This paper details this enhanced dataset and the processing methods, now made available as open-source codes, making the dataset more accessible, transparent, and reproducible.Peer reviewe

    Temporal trends (1990 - 2000) in the concentration of cadmium, lead and mercury in mosses across Europe

    Get PDF
    Abstract The European heavy metals in mosses survey provides data on the concentration of 10 heavy metals in naturally growing mosses. The survey has been repeated at five-yearly intervals and in this paper we report on the temporal trends in the concentration of cadmium, lead and mercury between 1990 and 2000. Metal- and country-specific temporal trends were observed. In general, the concentration of lead and cadmium in mosses decreased between 1990 and 2000; the decline was higher for lead than cadmium. For mercury not enough data were available to establish temporal trends between 1990 and 1995, but between 1995 and 2000 the mercury concentration in mosses did not change across Europe. The observed temporal trends for the concentrations in mosses were similar to the trends reported for the modelled total deposition of cadmium, lead and mercury in Europe

    Temporal trends in the concentration of arsenic, chromium, copper, iron, nickel, vanadium and zinc in mosses across Europe between 1990 and 2000

    Get PDF
    The European heavy metals in mosses biomonitoring network provides data on the concentration of ten heavy metals in naturally growing mosses and is currently coordinated by the UNECE ICP Vegetation (United Nations Economic Commission for Europe International Cooperative Programme on Effects of Air Pollution on Natural Vegetation and Crops). The technique of moss analysis provides a surrogate, time-integrated measure of metal deposition from the atmosphere to terrestrial systems. It is easier and cheaper, less prone to contamination and allows a much higher sampling density than conventional precipitation analysis. Moss surveys have been repeated at five-yearly intervals and in this paper we report on the temporal trends in the concentration of arsenic, chromium, copper, iron, nickel, vanadium and zinc between 1990 and 2000. Maps were produced of the metal concentration in mosses for 1990, 1995 and 2000, showing the mean concentration per metal per 50 km x 50 km EMEP grid square. Metal- and country-specific temporal trends were observed. Although the metal concentration in mosses generally decreased with time for all metals, only the decreases for arsenic, copper, vanadium and zinc were statistically significant. The observed temporal trends were compared with emission trends for Europe reported by EMEP (Co-operative Programme for Monitoring and Evaluation of the Long-range Transmission of Air Pollutant in Europe)

    A putative hybrid of Eucalyptus largiflorens growing on salt- and drought-affected floodplains has reduced specific leaf area and leaf nitrogen

    No full text
    A putative hybrid between Eucalyptus largiflorens F.Muell. and Eucalyptus gracilis F.Muell., called green box, has attracted attention for its ability to grow on the salt- and drought-affected Chowilla floodplain of the Murray River in South Australia. Relationships between carbon isotope discrimination (Δ13C) and the ratio of substomatal to ambient CO2 (ci/ca) indicated that green box was not as water use efficient as E. largiflorens. Specific leaf area of green box and E. gracilis was significantly lower compared with E. largiflorens (38.38 and 36.96 versus 43.71cm 2g-1). Leaf nitrogen for green box and E. gracilis was significantly lower compared with E. largiflorens (12.66 and 11.35 versus 15.07mgg-1 dry weight, P=0.004 and 0.001, respectively) and leaf carbon of E. gracilis was significantly higher compared with green box and E. largiflorens (541.75 versus 514.90 and 519.82mgg-1 dry weight, P=0.002 and 0.011 respectively). There were significantly (P=0.016) more occurrences of elevated ci/ca below a minimum gs in E. gracilis compared with E. largiflorens, with green box being intermediate (means=21.6, 6.8 and 9.4). After 10 years, E. largiflorens trunk circumference had significantly increased (P=0.017) and height had significantly decreased (P=0.026) due to visible dieback. Green box and E. gracilis grew slower, conserving resources, illustrating a useful strategy to consider when choosing plants for revegetation efforts. © 2012 CSIRO.Georgia R. Koerber, Jack V. Seekamp, Peter A. Anderson, Molly A. Whalen, and Stephen D. Tyerma

    The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data

    No full text
    Abstract The FLUXNET2015 dataset provides ecosystem-scale data on CO2, water, and energy exchange between the biosphere and the atmosphere, and other meteorological and biological measurements, from 212 sites around the globe (over 1500 site-years, up to and including year 2014). These sites, independently managed and operated, voluntarily contributed their data to create global datasets. Data were quality controlled and processed using uniform methods, to improve consistency and intercomparability across sites. The dataset is already being used in a number of applications, including ecophysiology studies, remote sensing studies, and development of ecosystem and Earth system models. FLUXNET2015 includes derived-data products, such as gap-filled time series, ecosystem respiration and photosynthetic uptake estimates, estimation of uncertainties, and metadata about the measurements, presented for the first time in this paper. In addition, 206 of these sites are for the first time distributed under a Creative Commons (CC-BY 4.0) license. This paper details this enhanced dataset and the processing methods, now made available as open-source codes, making the dataset more accessible, transparent, and reproducible

    Reprints and permissions:

    Get PDF
    sagepub.co.uk/journalsPermissions.na
    corecore