126 research outputs found

    Future challenges and chances in the diagnosis and management of invasive mould infections in cancer patients.

    Get PDF
    Diagnosis, treatment, and management of invasive mould infections (IMI) are challenged by several risk factors, including local epidemiological characteristics, the emergence of fungal resistance and the innate resistance of emerging pathogens, the use of new immunosuppressants, as well as off-target effects of new oncological drugs. The presence of specific host genetic variants and the patient's immune system status may also influence the establishment of an IMI and the outcome of its therapy. Immunological components can thus be expected to play a pivotal role not only in the risk assessment and diagnosis, but also in the treatment of IMI. Cytokines could improve the reliability of an invasive aspergillosis diagnosis by serving as biomarkers as do serological and molecular assays, since they can be easily measured, and the turnaround time is short. The use of immunological markers in the assessment of treatment response could be helpful to reduce overtreatment in high risk patients and allow prompt escalation of antifungal treatment. Mould-active prophylaxis could be better targeted to individual host needs, leading to a targeted prophylaxis in patients with known immunological profiles associated with high susceptibility for IMI, in particular invasive aspergillosis. The alteration of cellular antifungal immune response through oncological drugs and immunosuppressants heavily influences the outcome and may be even more important than the choice of the antifungal treatment. There is a need for the development of new antifungal strategies, including individualized approaches for prevention and treatment of IMI that consider genetic traits of the patients. Anticancer and immunosuppressive drugs may alter the ability of the immune system to fight invasive mould infections and may be more important than the choice of the antifungal treatment. Individualized approaches for prevention and treatment of invasive mold infections are needed

    Electronic structure of NiS_{1-x}Se_x

    Full text link
    We investigate the electronic structure of the metallic NiS1−x_{1-x}Sex_x system using various electron spectroscopic techniques. The band structure results do not describe the details of the spectral features in the experimental spectrum, even for this paramagnetic metallic phase. However, a parameterized many-body multi-band model is found to be successful in describing the Ni~2pp core level and valence band, within the same model. The asymmetric line shape as well as the weak intensity feature in the Ni~2pp core level spectrum has been ascribed to extrinsic loss processes in the system. The presence of satellite features in the valence band spectrum shows the existence of the lower Hubbard band, deep inside the pdpd metallic regime, consistent with the predictions of the dynamical mean field theory.Comment: To be published in Physical Review B, 18 pages and 5 figure

    Multidimensional rasch models for partial credit scoring

    Get PDF
    Rasch models for partial-credit scoring are discussed and a multidimensional version of the model is formulated. A model may be specified in which consecutive item responses depend on an underlying latent trait. In the multidimensional partial-credit model, different responses may be explained by different latent traits. Data from van Kuyk’s (1988) size concept test and the Raven Progressive Matrices test were analyzed. Maximum likelihood estimation and goodness-of-fit testing are discussed and applied to these datasets. Goodness-of-fit statistics show that for both tests, multidimensional partial-credit models were more appropriate than the unidimensional partial-credit model. Index terms: X2 testing, exponential family model, multidimensional item response theory, multidimensional Rasch model, partial-credit models, Progressive Matrices test, Rasch model

    Photoluminescence and cathodoluminescence of Eu:La2O3 nanoparticles synthesized by several methods

    Get PDF
    Abstract : Europium-doped La2O3 nanocrystalline powders with sizes ranging from 4 nm to 300 nm have been obtained by the modified Pechini, hydrothermal with conventional furnace, hydrothermal with microwave furnace, and precipitation with ultrasonic bath methods. X-ray diffraction techniques were used to study the evolution of the prepared gels towards the desired crystalline phase. We determined the size and the morphology of the nanoparticles by electronic microscopy. Finally, we studied and analyzed the luminescence properties of the trivalent europium in the hexagonal La2O3 nanocrystals by photoluminescence and cathodoluminescence

    238U(n, Îł) reaction cross section measurement with C 6D6 detectors at the n-TOF CERN facility

    Get PDF
    This is an Open Access article distributed under the terms of the Creative Commons Attribution License 2.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly citedThe radiative capture cross section of 238U is very important for the developing of new reactor technologies and the safety of existing ones. Here the preliminary results of the 238U(n,Îł) cross section measurement performed at n-TOF with C6D6 scintillation detectors are presented, paying particular attention to data reduction and background subtraction.Peer reviewe

    The nucleosynthesis of heavy elements in Stars : The key isotope 25Mg

    Get PDF
    This is an Open Access article distributed under the terms of the Creative Commons Attribution License 2.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly citedWe have measured the radiative neutron-capture cross section and the total neutron-induced cross section of one of the most important isotopes for the s process, the 25Mg. The measurements have been carried out at the neutron time-of-flight facilities n-TOF at CERN (Switzerland) and GELINA installed at the EC-JRC-IRMM (Belgium). The cross sections as a function of neutron energy have been measured up to approximately 300 keV, covering the energy region of interest to the s process. The data analysis is ongoing and preliminary results show the potential relevance for the s process.Peer reviewe

    Microscopic simulation of xenon-based optical TPCs in the presence of molecular additives

    Get PDF
    [EN] We introduce a simulation framework for the transport of high and low energy electrons in xenon-based optical time projection chambers (OTPCs). The simulation relies on elementary cross sections (electron-atom and electron-molecule) and incorporates, in order to compute the gas scintillation, the reaction/quenching rates (atom-atom and atom-molecule) of the first 41 excited states of xenon and the relevant associated excimers, together with their radiative cascade. The results compare positively with observations made in pure xenon and its mixtures with CO2 and CF4 in a range of pressures from 0.1 to 10 bar. This work sheds some light on the elementary processes responsible for the primary and secondary xenon-scintillation mechanisms in the presence of additives, that are of interest to the OTPC technology.DGD is supported by the Ramon y Cajal program (Spain) under contract number RYC-2015-18820. The authors want to acknowledge the RD51 collaboration for encouragement and support during the elaboration of this work, and in particular discussions with F. Resnati, A. Milov, V. Peskov, M. Suzuki and A. F. Borghesani. The NEXT Collaboration acknowledges support from the following agencies and institutions: the European Research Council (ERC) under the Advanced Grant 339787-NEXT; the Ministerio de Economia y Competitividad of Spain under grants FIS2014-53371-C04 and the Severo Ochoa Program SEV-2014-0398; the GVA of Spain under grant PROM-ETEO/2016/120; the Portuguese FCT and FEDER through the program COMPETE, project PTDC/FIS-NUC/2525/2014 and UID/FIS/04559/2013; the U.S. Department of Energy under contracts number DE-AC02-07CH11359 (Fermi National Accelerator Laboratory) and DE-FG02-13ER42020 (Texas A& and the University of Texas at Arlington.Azevedo, C.; Gonzalez-Diaz, D.; Biagi, SF.; Oliveira, CAB.; Henriques, CAO.; Escada, J.; Monrabal, F.... (2018). Microscopic simulation of xenon-based optical TPCs in the presence of molecular additives. Nuclear Instruments and Methods in Physics Research Section A Accelerators Spectrometers Detectors and Associated Equipment. 877:157-172. https://doi.org/10.1016/j.nima.2017.08.049S15717287

    The Sudbury Neutrino Observatory

    Full text link
    The Sudbury Neutrino Observatory is a second generation water Cherenkov detector designed to determine whether the currently observed solar neutrino deficit is a result of neutrino oscillations. The detector is unique in its use of D2O as a detection medium, permitting it to make a solar model-independent test of the neutrino oscillation hypothesis by comparison of the charged- and neutral-current interaction rates. In this paper the physical properties, construction, and preliminary operation of the Sudbury Neutrino Observatory are described. Data and predicted operating parameters are provided whenever possible.Comment: 58 pages, 12 figures, submitted to Nucl. Inst. Meth. Uses elsart and epsf style files. For additional information about SNO see http://www.sno.phy.queensu.ca . This version has some new reference

    Search for dark matter produced in association with a hadronically decaying vector boson in pp collisions at sqrt (s) = 13 TeV with the ATLAS detector

    Get PDF
    A search is presented for dark matter produced in association with a hadronically decaying W or Z boson using 3.2 fb−1 of pp collisions at View the MathML sources=13 TeV recorded by the ATLAS detector at the Large Hadron Collider. Events with a hadronic jet compatible with a W or Z boson and with large missing transverse momentum are analysed. The data are consistent with the Standard Model predictions and are interpreted in terms of both an effective field theory and a simplified model containing dark matter
    • 

    corecore