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Multidimensional Rasch Models for
Partial-Credit Scoring
Henk Kelderman

Vrije Universiteit, Amsterdam

Rasch models for partial-credit scoring are discussed
and a multidimensional version of the model is formu-
lated. A model may be specified in which consecutive
item responses depend on an underlying latent trait. In
the multidimensional partial-credit model, different re-
sponses may be explained by different latent traits. Data
from van Kuyk’s (1988) size concept test and the Raven
Progressive Matrices test were analyzed. Maximum

likelihood estimation and goodness-of-fit testing are dis-
cussed and applied to these datasets. Goodness-of-fit
statistics show that for both tests, multidimensional par-
tial-credit models were more appropriate than the unidi-
mensional partial-credit model. Index terms: X2 testing,
exponential family model, multidimensional item re-
sponse theory, multidimensional Rasch model, partial-
credit models, Progressive Matrices test, Rasch model.

Responses to educational and psychological test questions can be scored partially correct rather than sim-
ply correct or incorrect. To relate a person’s responses to the person’s underlying latent trait, item response
models for dichotomously scored data (Birnbaum, 1968; Lord, 1980; Lord & Novick, 1968; Rasch, 1960/80)
have been generalized to polytomous ordered data (Andrich, 1978a, 1978b; Glas & Verhelst, 1989; Masters,
1982; Muraki, 1990; Rost, 1988; Samejima, 1969). In some applications, however, it is questionable whether
fully correct answers require the same trait as partially correct answers. A Rasch-type multidimensional
partial-credit model (PCM) was formulated for data in which different answers depend on different traits.

Model

A ~J~n~df ~~asi&reg;n~l Model

For the unidimensional PCM (1PCM; Andrich, 1978a; Masters, 1982), let nii, be the probability of re-
sponse x of person j to item and r; be the number of possible (partial) credit responses for item i. The 1PCM
in terms of the log-odds of consecutive item responses can be written as

with

to fix the scale, and log denotes the logarithm to the base e = 2.71 ~2~ 1. That is, the log-odds of consecutive
responses can be written as the difference of a person parameter ej and a response parameter 6,~. The person
parameter describes the trait level of the person. As the person parameter becomes higher, the log-odds of
giving a higher quality response x rather than a lower quality response x - becomes higher. The threshold
parameter describes the difficulty of the item response. As the threshold parameter becomes higher, the
log-odds of giving the response x rather than the response x - 1 becomes lower. A similar model for the
log-odds of nonconsecutive responses is
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This model is a generalization of the Rasch model for dichotomously scored (r1 &reg; 1) items. It has the useful
property that objects-items or persons-can be compared independently of other objects within the frame of
reference (Rasch, 1961, 1977). This property is called specific objectivity (Fischer, 1995; Masters, 1987). In
Equation 1, specific objectivity means that two different persons, sayj and j’, can be compared by

independently of the response x to item i (~, x). Two different responses [e.g., (a, x) and (ii x’ )] can be
compared by

regardless of the person j.
Other unique measurement properties of the Rasch model are that the responses of all items have iden-

tical (loglinear) interactions with all other variables in the nomological network (Kelderman, 1995) and
that the items follow composite transitivity (Roskam & Jansen, 1984).

Rasch models describe the trait (0) and difficulty (5) parameters of individual persons and items, re-
spectively (Rasch, 1960). Not considered in these models is the statistical generalization to other persons
from the same population of intended respondents, nor to other items from the same universe of intended
items. Therefore, no sampling distributions are specified for person or item parameters. See Molenaar
(1995) for a discussion of the different sources of randomness in item response theory (IRT) models.

Multidimensional Partial-Credit Models

The 1PCM with trait parameter ei can be generalized to a multidimensional PCM (MPCM) with s trait,
parameters 0 i (q = 1, ..., s). Let wqix be an indicator variable that takes the value 1 if the log-odds ilj,, of
giving response x rather than x - 1 depends on latent trait 6. and 0 otherwise. The MPCM is then

In this model, the person’s ability to give a response to a particular item is considered to be equal to a
weighted sum of more basic trait parameters. In the general case of this MPCM, the weights wq;x may take
discrete non-negative values (0, 1, 2, ...).

Like the ipcm, this MPCM has the useful property that response alternatives can be compared indepen-
dently of the person, and persons can be compared independently of the alternatives, provided that both
responses depend on the trait of interest.

The model can be written in terms of the response probabilities 1tijx rather than the log-odds L2ii.. Next,
the probability of a response pattern and of the entire data matrix are provided.

From Equation 1,

Furthermore from
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so that from Equations 6-9

where

Note that if s = 1 and wRty = 1, the IPCM results.
If the consecutive odds interpretation of the model is not appropriate for the data, an alternative param-

eterization of Equation 10 is

where

and

and conversely,

and

This model is a generalization of Rasch’s original multidimensional model (Andersen, 1973b; discussed
below); it also is a confirmatory multidimensional IRT model.

The model is multidimensional because the 9j = (Oil’ 8j2’ ..., 8j) are vector valued so that the trait of each
person can be represented by a point in an s-dimensional real latent space (Lord & Novick, 1968, p. 359).
Note that this multidimensional Rasch model (the MPCM) does not specify a population distribution for 9j
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because the model is concerned with individual characteristics rather than population characteristics.
The model is confirmatory because the B weights, indicating the strength of the relation between the

item response and 0j, must be specified. The model describes the relationship between 8jq and the probabil-
ity of each of the item responses. If a person’s value on 8~ becomes higher, the probability of responses
with larger B weights on that trait become higher. Conversely, if a person has many item responses that
have high B weights for a certain latent trait, the model states that these responses have a high probability
under a high value of this latent trait, so that these responses indicate a high value of the trait.

To specify an ordinary 1PCM, w9;x = 1 (q = 19 i &reg; 1, ..., n; x = 1,..., r,), which is equivalent to specifying
Bqix::: x, (~ = 19 i::: 1, ..., ra; x = 0, ..., r1). Figure la describes the influence in the iPcM of the latent trait 0j on
each of the responses. The B weights over the arrows describe the strength of the relation. In this model,
the correct response (x = 2) depends 2 times more on 0j than the partially correct response (x = 1). Figure
lb shows the same situation for a 2PCM. The partially correct response and the fully correct response both
depend on 0j . In addition, the fully correct response also depends on 02.

Figure 1
Models for Three-Category Items

Estimating the Multidimensional Partial-Credit Model

The likelihood of the data under the MPCM. Denote the response x of person j to item i as xjj and let

xi = (xi,, ..., Xj) be the vector of responses of person j. Let

be person j’s sum of weights on trait c~; ti = (tjP ..., t~s) be the vector of weight-sums; and 8 be the vector of
threshold parameters. If it is assumed that the person’s responses are independent, the probability of this
response vector can be derived from Equations 6 and 7 as

where

and
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Estimation of parameters. The model in Equation 20 contains n item parameters and N person param-
eters. It may seem natural to estimate both item parameters and person parameters maximizing the likelihood

where X = (x,, ..., X,) is the data matrix. However, as the number of person parameters increases with N,
the parameter estimates become inconsistent (Neyman & Scott, 1948). To remedy this situation, a condi-
tional estimation procedure is used.

The model in Equation 20 is an exponential family distribution (Lehman, 1983, p. 26), and tj = (~.,,.... ~)
is a sufficient statistic for the person parameters 19, = (8~, oj2l ..., 0~~). This implies that all statistical
information in the data about the person’s position in the multidimensional latent space Gj is contained in
the tj; that is, there is a one-to-one relation between parameter estimates and the statistic. Note that tj is
a statistic because the model is confirmatory; that is, it depends on the data through weights (~9~ or vv9z%)
that are not estimated but specified by the user. Exponential family models allow for conditional infer-
ence (Lehman, 1983) as follows.

If 2:Ylt. is defined as the sum over all possible response vectors y that give rise to a weight-sum vector t.,
the probability of a vector tj can be written as

A convenient property of Rasch models is that the conditional of xj given tj does not depend on 0ji

-11

which results from division of Equation 20 by Equation 24. This means that estimation of the threshold param-
eters S can be pursued independently of the estimation of person parameters. Note that this property holds for
both multidimensional and unidimensional models, because Equation 20 is an exponential family model.

Let £ be the number of persons with weight-sum vector t and let Ry be the number of persons with a
response of at least y to item ~. Furthermore, let T = ~t,9 ...~ t,)* be the matrix of weight-sums. The condi-
tional probability of the data given the weight-sums then becomes

where r, = log/(8,t) is a constant of proportionality. Viewed as a function of the parameters 8, this is the
conditional likelihood function, which takes its maximum for the maximum likelihood estimator of S. This
likelihood has the form of an exponential family with sufficient statistics Riy for the threshold parameters
bay and numbers S, for each of the proportionality constants r, (Lehman, 1983, p. 43). Standard theory for
exponential family models yields the likelihood equations R;X = E(R,,,) and S, = E(St). Solving these equa-
tions for the parameters 5 and x gives the maximum likelihood estimates (MLES) of the parameters. The
equations, however, have no direct solution so they must be solved by iterative methods. For the case of the
PCM (s = 1), efficient algorithms have been described by Andersen (1973a, 1977) and Fischer (1974). For
the case of a discrete-data-exponential-family likelihood of the form of Equation 26, more general algo-
rithms for the analysis of discrete data (Andersen, 1980; Bishop, Fienberg, & Holland, 1975; Haberman,
1979; Kelderman, 1992) may be used. Appendix A describes an adaptation of a ~era~gn~-St~ph~~ (Deming
& Stephan, 1940; Bishop et ~1., 1975, p. 84) algorithm; Appendix B describes the Newton-Raphson algo-
rithm. Both algorithms yield MLEs.
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Newton-Raphson is faster, but it may break down if the starting values are far from the ~~,~s. It also
requires the computation of second-order derivatives of the likelihood function. The Deming-Stephan
algorithm, however, is not sensitive to the choice of starting values and requires the sufficient statistics Rlx
and S, only. Deming-Stephan takes more iterations than Newton-Raphson, but each iteration takes less
computation. The Newton-Raphson algorithm was used here after a few initial Deming-Stephan iterations
to obtain good starting values. Both algorithms are implemented in the computer program LOGIMO
(Kelderman & Steen, 1993).
A complicated problem for both algorithms is the computation of the expected sufficient statistics E(R¡x)

and E(S,). Efficient solutions for the PCM were described by Andersen ( 1977) and Fischer ( 1974). For more
general discrete data models, efficient computational procedures have been described by Kelderman (1992).

Testing ~ltldl ~nsl&reg;n~llty of Partial-Credit Models

For exponential family models based on discrete data (Equation 26), various goodness-of-fit statistics
are available. Bishop et al. (1975) and Haberman (1979) provided a complete account of these statistics
[e.g., Pearson’s statistic (X~) and the likelihood-ratio statistic (G’)]. These statistics are asymptotically
distributed as X2s with degrees of freedom (df) equal to the difference between the number of possible
response patterns and the number of independent model parameters. If, however, the expected counts of
the response patterns become too small, the approximation of the distribution of the overall goodness-of-
fit statistic ~Z and GZ by a X2 distribution becomes poor (Koehler, 1977; Lancaster, 1961), although the
distribution of X2 is generally closer to ~2 than to (p2 (Cox & Placket, 1980; Larnz, 1978). The usual
criterion for the size of the expected counts is 5; however, if the distribution is smooth the minimum
expected count could be as small as 1 (Cochran, 1952, 1954).

If the minimum expected counts are too small, the model of interest can be tested against an alternative
model that contains the PCM of interest as a special case, but that also contains parameters describing a
particular deviation. This alternative model will be called a diagnostic model. For the size concept data
discussed below, a possible diagnostic model for the 2PCM would be a 2PCM with different item response
parameters in each age group.
A statistic that can be used to compare a PCM with such a diagnostic model is the likelihood-ratio

statistic. Let L = log P(~ ~ T’) be the loglikelihood of the model of interest and L* be the loglikelihood of
the diagnostic model. The likelihood-ratio test statistic is

which is asymptotically distributed as X2 with df equal to the difference in the number of linearly indepen-
dent parameters of both models (Rao, 1973, pp. 418-420). Haberman (1977) showed that the likelihood-
ratio statistic has good asymptotic properties.

Example Applications

Exa~ph l Size Concept Data

Data
Van Kuyk (19~~) collected data from an observation program of 4-6.5 year-old children. The program

tested skills prerequisite for arithmetic abilities. One subtest was reanalyzed here because it requires partial-
credit scoring. The test measured the application of size concepts such as 6‘l~ng’Sh&reg;rt,99 &dquo;high-low,&dquo; &dquo;thick-

thin,&dquo; and &dquo;wide-narrow.&dquo; For example, in Item 6, a figure displaying four identical girls with successively
shorter skirts was shown to the child. The test administrator pointed to the figure and said &dquo;Here you see some
skirts. They gradually become a bit ...&dquo; and the examinee supplies the answer. Answers were rated incorrect
if the answer was cognitively incorrect (e.g., &dquo;different&dquo; rather than &dquo;short&dquo;). Answers were rated correct if
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the correct size concept was given (i.e., &dquo;long-short&dquo;) and was correctly applied [e.g., &dquo;short(er)&dquo; rather than
&dquo;loa~g(er)&dquo;]. Linguistic errors, such as &dquo;small&dquo; rather than &dquo;smaller,&dquo; did not count as long as the answer was
cognitively correct. Small children may be unable to produce the correct specific concept (e.g., &dquo;long-short&dquo;),
but may use the general size concept &dquo;big-small&dquo; instead. If &dquo;big-small&dquo; was correctly applied [e.g., &dquo;the skirt
is small(er)&dquo;] the answer was rated partially correct.

The analysis of these data focused on the question of whether the ability to apply the &dquo;big-small&dquo; gen-
eral concept was the same latent trait as the ability to apply the specific dimensional size concept &dquo;long-
short.&dquo; It may be hypothesized that these traits are not identical because the first activity may be based
solely on the perceptual saliency of a picture element (e.g., the skirt), whereas the second process depends
on the correct identification of a particular figural property of that element (e.g., vertical length).

Each of the N = 263 persons responded to n = 15 items. The random response Xi) of fixed person j
( j = 1, ..., ~l ) on fixed item i (i = 1, ..., n) was modeled. In this example, this response was scored with
values x,~ = 0 for an incorrect response, xij = 1 for a partially correct response, and x;j = 2 for a correct
response, where x = 1, ..., r,.

The sample was divided into three age groups: for ages 4-5 there were 66 children; ages 5-5.5, 132
children; and ages 5.5-6, 65 children. The likelihood equations of thc ~CM and MPCMs estimated here were
solved simultaneously in all three subpopulations, and the item response parameters 8 were set equal over
subgroups. The’t. parameters were allowed to vary between subgroups. This required a slight extension of
the likelihood equations. To accomplish this, a subgroup subscript-l-was added to S and I in the likeli-
hood equations: Sgl = E(Skl).
Results

PCM. Table 1 shows the item threshold parameter estimates (8¡) of the IPCM for the size concept data.
The parameters 8¡¡ pertain to the log-odds of the partially correct response (x = 1) relative to the incorrect
response (x = 0), the parameters gi, pertain to the log odds of the correct response (x = 2) relative to the
partially correct response (x = 1), and the parameters gil + 8i2 pertain to the log-odds of the correct response
(x = 2) relative to the incorrect response (x = 0). Note that the identifying constraint in Equation 2 fixes the
sum of all parameters 8ii and 8i2 to be equal to 0, so that the mean of the parameters 8¡1 + gi2 is 0.

Table 1 shows that the mean (-.37) of 8i, for the partially correct responses was lower than 0. This means
that, on average, it was less difficult to give a &dquo;big-small&dquo; response than to give a correct specific size concept
(e.g., &dquo;shorter&dquo;) relative to an incorrect response. For example, in Item 6 it was relatively easy to see that the
rightmost skirt was &dquo;smaller&dquo; (86 I) but it was more difficult to apply the correct size concept &dquo;shorter&dquo; both
relative to the incorrect response ’( 86.1 + 86.2 = 1.36) and to the partially correct response (B6.2 = 1.35).

Item 8 is an item for which the reverse is true. For Item 8, a figure is shown with three ladders. On each
of the ladders is an identical child standing on a rung, but the children are standing on lower positions on
consecutive ladders. In Item 8 it is relatively difficult to give the &dquo;big-small&dquo; answer (881 = 2.78) rather than
the incorrect answer, but easier to give the correct answer (882 = -1.60) &dquo;lower&dquo; rather than the &dquo;big-small&dquo;
answer. This seems rather obvious because in the pictures there are no elements differing in size, only
position, whereas in Item 6 the skirts clearly differ in size.

To get the fully correct answer, the specific type of size concept also seemed to matter. Concepts de-
scribing the vertical dimension-&dquo;low, less, lower,&dquo; and &dquo;higher&dquo;-seemed to be more difficult than the size
concepts that were not associated with a particular direction such as &dquo;long, short, thin, thickest, longest,&dquo;
and &dquo;thinnest.&dquo;
MPCM. A 2PCM was also specified for these data. It was hypothesized that individual differences in

the ability to apply the general size concept &dquo;big-small&dquo; were qualitatively different from the individual
differences in the ability to apply the specific size concept (e.g., &dquo;long-short&dquo;). Therefore, the MPCM was
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Table 1
Parameter Estimates of the IPCM and the 2PCM for the Size Concept Data

*Fixed.

specified such th~t ~ = 19 2 and x = 0, 1,2 with weights ~9~ = 1 if q = x and 0 otherwise.
The item parameter estimates for the 2PCM are also given in Table 1. In the 2PCM, the origin of both

latent dimensions was indeterminate. To remove this indeterminacy, means of the item parameters for each
latent dimension were set equal to a constant. In Table 1, the parameter estimates of the 2PCM are displayed
for two choices of identifying constants (0.00,0.00) and (-.37, .37) corresponding to the mean values found
under the IPCM. The latter normalization simplifies comparison with the ipcm. Table 1 shows that the

parameter estimates of the 2PCM were approximately the same as in the 1PCM. For example, for Item 15
(815,1 and 815,2) were -2.30 and 3.11 for the 1PCM and -2.45 and 3.29 for the 2PCM, respectively.

Goodness of fit. To select between the models, their goodness of fit was compared. The number of
possible response patterns for the size concept data (315) was too large to use the overall .~2 or G2 good-
ness-of-fit statistics. Therefore, the likelihood ratio statistic of Equation 27 was used to compare the fit of
different models. Four models were considered: two versions of the ¡PCM and two versions of the 2PCM.
The first version had threshold parameters that were the same across age groups and the second version
had threshold parameters that differed across age groups. Table 2 gives -2 times the likelihood and the
number of parameters of each of these models. These numbers were used to compute the likelihood ratio
statistic of Equation 27. Comparing the fit of the ¡PCM with equal (invariant) parameters over subgroups
with the 1PCM with different (dependent) parameters over subgroups (Row 1), a large likelihood ratio
statistic was obtained (3,436.51 - 3,280.01 &reg; 156.50) relative to the df (57). Therefore, the former model
was rejected against the latter at the .05 significance level.

Example ~&reg; Progressive Matrices Items

Method

Data. Data from 1,061 persons to the Standard Raven Progressive Matrices Test (Raven, Raven, &

Court, 1991) collected were reanalyzed (Vodegel Matzen, 1994). The Progressive Matrix Test is a nonver-
bal test that is usually assumed to measure the single trait of analytic intelligence.

The fit of several PCMs was compared and the best-fitting model was selected. Because chance capitaliza-
tion may affect the results, the findings were cross-validated on an independent sample. To do this, the sample
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Table 2
-2 Times the Likelihood (-2L) and Number of Parameters (No.)

for the IPCM and the 2PCM

was randomly divided into an exploration sample (lV= 511) and a cross-validation sample (lV &reg; 550).
Figure 2 shows a typical matrix item. To protect the security of the actual Raven items, an isomorph

(which uses the same rules but different figural elements and attributes) is shown here. The items have eight
answer alternatives. The person is asked to select the alternative that fits the matrix best. The answers can be
found by scanning certain rules; some items require different rules than others. In the item in Figure 2, the
height of the square diminishes in each row and the width of the square increases in each column. Both rules
are called quantitative pairwise progression (Rule 1). Alternative 5 is the correct response-it has the largest
width and the smallest height. Alternatives l, 4., 7, and 8 are partially correct responses: either the height is
correct and the width is incorrect (1 and 8), or the width is correct and the height is incorrect (4 and 7). The
remaining responses (1, 3, and 6) are incorrect responses.

Figure 2
Isomorph of Item C7 of the Raven Progressive Matrices Test

To illustrate the use of MPCMs in studying the dimensionality of matrix items, six items were selected
(n = 6): three iterns-C6, C7, and c1o-were based on Rule 1 and three items-D7, D8, and D9-used a second
rule (Rule 2). Table 3 shows for each response alternative whether it was incorrect (denoted by x = 0),
partially correct (x = 1), or fully correct (x = 2).
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Table 3

Scoring of Responses to Six Matrix Items Into the
Categories Incorrect (x = 0), Partially Correct (x = 1),

and Correct (x = 2)

Models. As multidimensional alternatives to the ¡PCM (Model several mpcms may be for
these data. One alternative hypothesis (Model is based on the idea that finding two instances of the rule
rather than one requires more cognitive ability and not necessarily the same type as finding one instance
only. Sternberg (1990, p. 121 ) disctasscd control processes that are involved in the execution of com-
pounded cognitive tasks-such as a person keeping track of their place in task performance. It may be
hypothesized that finding both instances of the rules invokes such a type of ability on which persons may
differ. This hypothesis can be modeled by specifying a separate latent trait pertaining to the fully correct
response (see Figure lb).

Another alternative hypothesis (Model C) is that finding Rule 1 and Rule 2 instances pertain to different
cognitive abilities. This hypothesis may be modeled by specifying a different latent trait for Items C6, C7,
and ClO than for Items D7, D8, and D9.

Table 4 gives the B weight specifications for Rule 1 items and Rule 2 items of four mpcms, Model B is
two-dimensional within each item; that is, the fully correct response involves an additional latent trait
corresponding to a specific metacognitive ability that is necessary to correctly combine two rule instances.
Table 4 shows that in Model B both Rule 1 and Rule 2 items pertained to the same latent traits.

Model C is like Model A in that within each item only one latent trait is specified (see also Figure la).
The difference between A and C is that different latent traits are specified for the items that involve Rule 1

Table 4
B Weight Specifications for MPCMs for Rule 1 Items ( j = 1, 2, 3) and
Rule 2 Items ( j = 4, 5, 6) for Response Categories Incorrect (x = 0),

Partially Correct (x = 1), and Correct (x = 2)
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(Items 1, 2, and 3) than for the items that involve Rule 2 (Items 4, 5, and 6). Finally, Model D has both
multidimensionality within and across the items. This model has three latent traits: one latent trait corre-
sponding to Rule 1, one corresponding to Rule 2 (as in Model C), and one corresponding to the meta-
component (as in Model B).

Results

To test unidimensionality within the item responses, Model A was compared with Model B and Model
C was compared with Model D using a likelihood ratio (LR) test. Both comparisons [LR(A,B) = 102, df =
13 ; L,R(~, D) = 132, df = 8] were significant at the .05 significance level. the null hypothesis of a IPCM
within each item was rejected in favor of the 2PCM.

To test the hypothesis that Rule I items pertained to a different latent trait than Rule 2 items, Model A
was compared with Model C and Model B was compared with Model D. These comparisons were also
highly significant [LR(A,C) = 147, df = 34; LR(B,D) = 177, df = 29], indicating that both types of items
pertained to different latent traits.

Table 5 shows item fit for Model D. In Table 5, Model D’s ~~2 statistics are given for each combination
of item (i) and 0 for which weights were specified in the model. Comparing these X2 statistics with their df,
no significant outcomes were found that would lead to the rejection of Model D for the exploration sample.
Therefore, it was concluded that Model D, specifying a different latent trait for each of the rules and a
common latent trait for the metacognitive ability in combining the rules, fit the data. Table 5 also shows the
cross-validation results of the 2 statistics for Model D. These results also indicated a good fit to the data.
In the cross-validation sample, none of the statistics exceeded the a = .05 critical value of 11.1 (df = 5) or
19.7 (df = 11).

Table 6 shows the parameter estimates for Model D. For each latent trait, one parameter was fixed to 0 to

Table 5

Jl~~ Goodness-of-Fit Statistics of the Three-Dimensional PCM (Model D) for Progressive
____Matrices Data for the Exploration Sample and the Cross-Validation Sample____

make the model identifiable: 811 fixed the scale of the first latent trait (Rule 1), 8,, fixed the scale of the second
latent trait (Rule 2), and S12 fixed the scale of the third latent trait (metacomponent). The 8 parameters for
consecutive odds as well as the 0 parameters are given. Note that the 5s can only be compared if they pertain
to the same latent trait. For example, the parameters b,2 (i = 1, ..., n) all pertain to the third latent trait and can,
therefore, be compared. Table 6 shows that Items 1 and 2 were easier on the third latent trait than Items 3-6
(their parameters b,2 = 0.00 and ~22 = .07 were smaller than ~32 = 1.25, 512 = 1.02, 812 = .79, and 562 = 1.24).

Discussion

By applying MPCMS to van Kuyk’s size concept data and the Raven Progressive Matrices Test, it was
shown that MPCMs can be used to test hypotheses about the dimensionality of polytomous test data. The
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Ta~le 6
Parameter Estimates (~) of

the Three-Dimensional PCM

(Model D) for Progressive
Matrices Data for the Total Sample

2PCM of the size concept example was a special case of the general MPCM in which all partially correct
scores pertained to one latent trait and all fully correct scores pertained to one latent trait. In that case the
MPCM is in fact equivalent to Rasch’s original multidimensional model (Andersen, 1973b). To show this,
let ri = s and wqiy = 1 for q = y, and 0 otherwise; then:

which is the MPCM. If, however, there are different specifications of wq;,,, such as in the Progressive Matrices
example, this may no longer be the case.

To test the goodness of fit of the items in a certain MPCM, item by weight-sum goodness-of-fit statistics
were used. Further research is needed on how to combine these statistics into one overall goodness-of-fit
statistic. For the dichotomous Rasch model, van den Wollenberg (1979, 1982) proposed the Q, statistic,
which is a weighted sum of the item by sum-score statistics X; for the dichotomous Rasch model. Al-
though simulations have shown that the distribution of the statistic is close to X2 , no proof of this is avail-
able to date. Glas (1988) derived a similar statistic for which he proved that it is asymptotically a X2 . The
statistic involves the inversion of a second derivative matrix that is more difficult to obtain. It is worth-
while to study a generalization of this statistic for MPCM.

Appendix A

Kelderman (1992) described Deming-Stephan and Newton-Raphson algorithms to solve the likelihood
equations iteratively. Let Kix = ~ &horbar; Ra~x_~) be the number of persons with response x on item Starting with
parameter values of 0, the Deming-Stephan algorithm (also called iterative proportional fitting) yields the
MLEs by repeated application of
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and

where &dquo;old&dquo; and &dquo;new&dquo; denote the parameter values before and after iteration, respectively. The Sex param-
eters can then be obtained from

Appendix B

The Newton-Raphson algorithm is faster but more sensitive to the choice of starting values than the
Deming-Stephan algorithm. It is based on the iteration

where«B) = S))~), T = (Tj, K = (KJ, S = (S,), and H is the Hessian matrix. Let M,, = ( h4;~;,~,), where M;~,~, is
the number of persons with response x on item i and response x, on item il. Define M,, = M21’ = (M~,)
similarly. Furthermore, let M~ = diag(S). The Hessian is then
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