758 research outputs found
On the Quantum Invariant for the Spherical Seifert Manifold
We study the Witten--Reshetikhin--Turaev SU(2) invariant for the Seifert
manifold where is a finite subgroup of SU(2). We show
that the WRT invariants can be written in terms of the Eichler integral of the
modular forms with half-integral weight, and we give an exact asymptotic
expansion of the invariants by use of the nearly modular property of the
Eichler integral. We further discuss that those modular forms have a direct
connection with the polyhedral group by showing that the invariant polynomials
of modular forms satisfy the polyhedral equations associated to .Comment: 36 page
Fermi acceleration in astrophysical jets
We consider the acceleration of energetic particles by Fermi processes (i.e.,
diffusive shock acceleration, second order Fermi acceleration, and gradual
shear acceleration) in relativistic astrophysical jets, with particular
attention given to recent progress in the field of viscous shear acceleration.
We analyze the associated acceleration timescales and the resulting particle
distributions, and discuss the relevance of these processes for the
acceleration of charged particles in the jets of AGNs, GRBs and microquasars,
showing that multi-component powerlaw-type particle distributions are likely to
occur.Comment: 6 pages, one figure; based on talk at "The multimessenger approach to
unidentified gamma-ray sources", Barcelona/Spain, July 2006; accepted for
publication in Astrophysics and Space Scienc
Interstellar MHD Turbulence and Star Formation
This chapter reviews the nature of turbulence in the Galactic interstellar
medium (ISM) and its connections to the star formation (SF) process. The ISM is
turbulent, magnetized, self-gravitating, and is subject to heating and cooling
processes that control its thermodynamic behavior. The turbulence in the warm
and hot ionized components of the ISM appears to be trans- or subsonic, and
thus to behave nearly incompressibly. However, the neutral warm and cold
components are highly compressible, as a consequence of both thermal
instability in the atomic gas and of moderately-to-strongly supersonic motions
in the roughly isothermal cold atomic and molecular components. Within this
context, we discuss: i) the production and statistical distribution of
turbulent density fluctuations in both isothermal and polytropic media; ii) the
nature of the clumps produced by thermal instability, noting that, contrary to
classical ideas, they in general accrete mass from their environment; iii) the
density-magnetic field correlation (or lack thereof) in turbulent density
fluctuations, as a consequence of the superposition of the different wave modes
in the turbulent flow; iv) the evolution of the mass-to-magnetic flux ratio
(MFR) in density fluctuations as they are built up by dynamic compressions; v)
the formation of cold, dense clouds aided by thermal instability; vi) the
expectation that star-forming molecular clouds are likely to be undergoing
global gravitational contraction, rather than being near equilibrium, and vii)
the regulation of the star formation rate (SFR) in such gravitationally
contracting clouds by stellar feedback which, rather than keeping the clouds
from collapsing, evaporates and diperses them while they collapse.Comment: 43 pages. Invited chapter for the book "Magnetic Fields in Diffuse
Media", edited by Elisabete de Gouveia dal Pino and Alex Lazarian. Revised as
per referee's recommendation
Gamma-Ray Bursts: The Underlying Model
A pedagogical derivation is presented of the ``fireball'' model of gamma-ray
bursts, according to which the observable effects are due to the dissipation of
the kinetic energy of a relativistically expanding wind, a ``fireball.'' The
main open questions are emphasized, and key afterglow observations, that
provide support for this model, are briefly discussed. The relativistic outflow
is, most likely, driven by the accretion of a fraction of a solar mass onto a
newly born (few) solar mass black hole. The observed radiation is produced once
the plasma has expanded to a scale much larger than that of the underlying
``engine,'' and is therefore largely independent of the details of the
progenitor, whose gravitational collapse leads to fireball formation. Several
progenitor scenarios, and the prospects for discrimination among them using
future observations, are discussed. The production in gamma- ray burst
fireballs of high energy protons and neutrinos, and the implications of burst
neutrino detection by kilometer-scale telescopes under construction, are
briefly discussed.Comment: In "Supernovae and Gamma Ray Bursters", ed. K. W. Weiler, Lecture
Notes in Physics, Springer-Verlag (in press); 26 pages, 2 figure
Bimodal age distribution at diagnosis in breast cancer persists across molecular and genomic classifications
Purpose: Female breast cancer demonstrates bimodal age frequency distribution patterns at diagnosis, interpretable as two main etiologic subtypes or groupings of tumors with shared risk factors. While RNA-based methods including PAM50 have identified well-established clinical subtypes, age distribution patterns at diagnosis as a proxy for etiologic subtype are not established for molecular and genomic tumor classifications. Methods: We evaluated smoothed age frequency distributions at diagnosis for Carolina Breast Cancer Study cases within immunohistochemistry-based and RNA-based expression categories. Akaike information criterion (AIC) values compared the fit of single density versus two-component mixture models. Two-component mixture models estimated the proportion of early-onset and late-onset categories by immunohistochemistry-based ER (n = 2860), and by RNA-based ESR1 and PAM50 subtype (n = 1965). PAM50 findings were validated using pooled publicly available data (n = 8103). Results: Breast cancers were best characterized by bimodal age distribution at diagnosis with incidence peaks near 45 and 65 years, regardless of molecular characteristics. However, proportional composition of early-onset and late-onset age distributions varied by molecular and genomic characteristics. Higher ER-protein and ESR1-RNA categories showed a greater proportion of late age-at-onset. Similarly, PAM50 subtypes showed a shifting age-at-onset distribution, with most pronounced early-onset and late-onset peaks found in Basal-like and Luminal A, respectively. Conclusions: Bimodal age distribution at diagnosis was detected in the Carolina Breast Cancer Study, similar to national cancer registry data. Our data support two fundamental age-defined etiologic breast cancer subtypes that persist across molecular and genomic characteristics. Better criteria to distinguish etiologic subtypes could improve understanding of breast cancer etiology and contribute to prevention efforts
Unveiling hidden physics at the LHC
The field of particle physics is at the crossroads. The discovery of a Higgs-like boson completed the Standard Model (SM), but the lacking observation of convincing resonances Beyond the SM (BSM) offers no guidance for the future of particle physics. On the other hand, the motivation for New Physics has not diminished and is, in fact, reinforced by several striking anomalous results in many experiments. Here we summarise the status of the most significant anomalies, including the most recent results for the flavour anomalies, the multi-lepton anomalies at the LHC, the Higgs-like excess at around 96 GeV, and anomalies in neutrino physics, astrophysics, cosmology, and cosmic rays. While the LHC promises up to 4 ab of integrated luminosity and far-reaching physics programmes to unveil BSM physics, we consider the possibility that the latter could be tested with present data, but that systemic shortcomings of the experiments and their search strategies may preclude their discovery for several reasons, including: final states consisting in soft particles only, associated production processes, QCD-like final states, close-by SM resonances, and SUSY scenarios where no missing energy is produced. New search strategies could help to unveil the hidden BSM signatures, devised by making use of the CERN open data as a new testing ground. We discuss the CERN open data with its policies, challenges, and potential usefulness for the community. We showcase the example of the CMS collaboration, which is the only collaboration regularly releasing some of its data. We find it important to stress that individuals using public data for their own research does not imply competition with experimental efforts, but rather provides unique opportunities to give guidance for further BSM searches by the collaborations. Wide access to open data is paramount to fully exploit the LHCs potential.Acknowledgements We thank S. Kraml for useful comments. SK is
supported by the Austrian Science Fund Elise-Richter grant project
number V592-N27. ND acknowledges the support of Department of
Science and Technology of the Government of India via the Ramanujan
Fellowship SB/S2/RJN-070/2018. BB is supported by the ERC
research grant NEO-NAT no. 669668. ZB is supported in part by the
MIUR grant PRIN 2017X7X85K and in part by the SRNSF grant DI-
18-335. TH is supported in part by the U.S. Department of Energy
under grant No. DE-FG02-95ER40896. KC is supported in part by Taiwan
Ministry of Sciences and Technology with grant number MoST-
110-2112-M-007-017-MY3. JT is supported by the National Science
Foundation under Cooperative Agreement PHY-2019786 (The NSF
AI Institute for Artificial Intelligence and Fundamental Interactions,
http://iaifi.org/), and by the U.S. DOE Office of High Energy Physics
under grant number DE-SC0012567. A.C. and C.A.M. acknowledge
financial support by the Swiss National Science Foundation, Project
No. PP00P2_176884. M.H. is supported by the Swiss National Science
Foundation, Project No. PCEFP2_181117. MB is supported by
the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)
under grant 396021762 â TRR 257. B.C. is supported by
the Italian Ministry of Research (MIUR) under the Grant No. PRIN
20172LNEEZ. A.P. is supported by the SpanishGovernment and ERDF
funds from the EU Commission [grant FPA2017-84445-P] and by the
Generalitat Valenciana [grant Prometeo/2017/053]. BM and XR are
grateful for support from the South African Department of Science
and Innovation through the SA-CERN programme and the National
Research Foundation for various forms of support. MK was supported
by MIUR (Italy) under a contract PRIN 2015P5SBHT and by INFN
Sezione di Roma La Sapienza and partially supported by the ERC-
2010 DaMESyFla Grant Agreement Number: 267985. Contribution by
MB is based upon work supported by the National Science Foundation
under Grant No. PHY-1913923. DM acknowledges support by MIUR
grant PRIN 2017L5W2PT and the INFN grant SESAMO. The work of
BD is supported in part by the U.S. Department of Energy under Grant
No. DE-SC0017987. GB acknowledges the support of the National
Research Foundation of South Africa via Thuthuka grant no. 117969
Unidentified gamma-ray sources off the Galactic plane as low-mass microquasars?
A subset of the unidentified EGRET gamma-ray sources with no active galactic
nucleus or other conspicuous counterpart appears to be concentrated at medium
latitudes. Their long-term variability and their spatial distribution indicate
that they are distinct from the more persistent sources associated with the
nearby Gould Belt. They exhibit a large scale height of 1.3 +/- 0.6 kpc above
the Galactic plane. Potential counterparts for these sources include
microquasars accreting from a low-mass star and spewing a continuous jet.
Detailed calculations have been performed of the jet inverse Compton emission
in the radiation fields from the star, the accretion disc, and a hot corona.
Different jet Lorentz factors, powers, and aspect angles have been explored.
The up-scattered emission from the corona predominates below 100 MeV whereas
the disc and stellar contributions are preponderant at higher energies for
moderate (~15 deg) and small (~1 deg) aspect angles, respectively. Yet, unlike
in the high-mass, brighter versions of these systems, the external Compton
emission largely fails to produce the luminosities required for 5 to 10 kpc
distant EGRET sources. Synchrotron-self-Compton emission appears as a promising
alternative.Comment: 11 pages, 5 figures. Contributed paper to the "Multiwavelength
Approach to Unidentified Gamma-Ray Sources", Eds. K.S. Cheng & G.E. Romero,
to appear in Astrophysics and Space Science journa
Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in âs = 7 TeV pp collisions with the ATLAS detector
A search for the direct production of charginos and neutralinos in final states with three electrons or muons and missing transverse momentum is presented. The analysis is based on 4.7 fbâ1 of protonâproton collision data delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with Standard Model expectations in three signal regions that are either depleted or enriched in Z-boson decays. Upper limits at 95% confidence level are set in R-parity conserving phenomenological minimal supersymmetric models and in simplified models, significantly extending previous results
Jet size dependence of single jet suppression in lead-lead collisions at sqrt(s(NN)) = 2.76 TeV with the ATLAS detector at the LHC
Measurements of inclusive jet suppression in heavy ion collisions at the LHC
provide direct sensitivity to the physics of jet quenching. In a sample of
lead-lead collisions at sqrt(s) = 2.76 TeV corresponding to an integrated
luminosity of approximately 7 inverse microbarns, ATLAS has measured jets with
a calorimeter over the pseudorapidity interval |eta| < 2.1 and over the
transverse momentum range 38 < pT < 210 GeV. Jets were reconstructed using the
anti-kt algorithm with values for the distance parameter that determines the
nominal jet radius of R = 0.2, 0.3, 0.4 and 0.5. The centrality dependence of
the jet yield is characterized by the jet "central-to-peripheral ratio," Rcp.
Jet production is found to be suppressed by approximately a factor of two in
the 10% most central collisions relative to peripheral collisions. Rcp varies
smoothly with centrality as characterized by the number of participating
nucleons. The observed suppression is only weakly dependent on jet radius and
transverse momentum. These results provide the first direct measurement of
inclusive jet suppression in heavy ion collisions and complement previous
measurements of dijet transverse energy imbalance at the LHC.Comment: 15 pages plus author list (30 pages total), 8 figures, 2 tables,
submitted to Physics Letters B. All figures including auxiliary figures are
available at
http://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HION-2011-02
- âŠ