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Abstract
Purpose Female breast cancer demonstrates bimodal age frequency distribution patterns at diagnosis, interpretable as two 
main etiologic subtypes or groupings of tumors with shared risk factors. While RNA-based methods including PAM50 have 
identified well-established clinical subtypes, age distribution patterns at diagnosis as a proxy for etiologic subtype are not 
established for molecular and genomic tumor classifications.
Methods We evaluated smoothed age frequency distributions at diagnosis for Carolina Breast Cancer Study cases within 
immunohistochemistry-based and RNA-based expression categories. Akaike information criterion (AIC) values compared 
the fit of single density versus two-component mixture models. Two-component mixture models estimated the proportion of 
early-onset and late-onset categories by immunohistochemistry-based ER (n = 2860), and by RNA-based ESR1 and PAM50 
subtype (n = 1965). PAM50 findings were validated using pooled publicly available data (n = 8103).
Results Breast cancers were best characterized by bimodal age distribution at diagnosis with incidence peaks near 45 and 
65 years, regardless of molecular characteristics. However, proportional composition of early-onset and late-onset age dis-
tributions varied by molecular and genomic characteristics. Higher ER-protein and ESR1-RNA categories showed a greater 
proportion of late age-at-onset. Similarly, PAM50 subtypes showed a shifting age-at-onset distribution, with most pronounced 
early-onset and late-onset peaks found in Basal-like and Luminal A, respectively.
Conclusions Bimodal age distribution at diagnosis was detected in the Carolina Breast Cancer Study, similar to national can-
cer registry data. Our data support two fundamental age-defined etiologic breast cancer subtypes that persist across molecular 
and genomic characteristics. Better criteria to distinguish etiologic subtypes could improve understanding of breast cancer 
etiology and contribute to prevention efforts.
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Introduction

Breast cancer heterogeneity may obscure etiologic risk fac-
tor associations if tumor subtypes are inadequately or incor-
rectly classified [1]. Etiologic studies generally group breast 

cancer into two or more protein-based subtypes using immu-
nohistochemistry expression of estrogen receptor (ER), pro-
gesterone receptor (PR), and HER2 [2]. On the other hand, 
efforts to classify breast cancer into four genomic-intrinsic 
subtypes have focused on determining targeted therapies and 
cancer-specific clinical outcomes [3]. However, for cancer 
prevention efforts, optimizing subtype classification for 
etiologic subtypes is the key for understanding risk factor 
associations.

There is emerging evidence, based on bimodal age fre-
quency distributions at diagnosis, that breast cancer can 
be divided into just two etiologically distinct subtypes [4]. 
Breast cancer bimodality has been observed across cat-
egories of ER status, tumor characteristics and histologic 
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subtypes [5]. Bimodality has also been observed in differ-
ent populations, for example, in both black and white breast 
cancer cases in the US [6] and South Africa [7]. However, 
prior evidence for breast cancer bimodality has been based 
on national cancer registries, which lack detailed molecular 
and genomic data. No studies, to our knowledge, have com-
prehensively explored evidence for bimodal age distribution 
at diagnosis across quantitative protein-based (i.e., percent 
ER-positivity) or RNA-based (i.e., ESR1 and PAM50) tumor 
characteristics.

Using data from the Carolina Breast Cancer Study, we 
visualized age distributions at diagnosis and applied two-
component mixture models across categories of breast can-
cer cases defined by molecular and genomic characteristics. 
We also sought to identify molecular or genomic features 
that could separate etiologically distinct breast cancers into 
single or unimodal age distributions at diagnosis.

Methods

Study design and participants

The Carolina Breast Cancer Study is a case–control study 
conducted in North Carolina (NC) in three phases (Phase 1: 
1993–1996, Phase 2: 1996–2001 and Phase 3: 2008–2013), 
the details of which have been described previously [8]. 
Briefly, invasive breast cancer cases in women between 
20 and 74 years of age were identified using rapid case 
ascertainment in cooperation with the NC Central Cancer 
Registry, and African American and young cases (aged 
20–49 years) were oversampled [8]. The study was approved 
by the Office of Human Research Ethics at the University of 
North Carolina at Chapel Hill (UNC) and written informed 
consent was obtained from each participant. We used data 
from all invasive breast cancer cases across all three Caro-
lina Breast Cancer Study phases (n = 4806) for the present 
analysis (Supplementary Table 1). Tumor size and lymph 
node status were abstracted from medical records, and these 
data were available for n = 4618 (96%) and n = 4751 (99%) 
study participants, respectively. Combined grade was cen-
trally assigned by a single breast cancer pathologist (JG) 
using the Nottingham breast cancer grading system [9], and 
was available for n = 3408 (71%) cases.

Immunohistochemistry analyses

All quantitative ER protein data, available for a total of 
n = 2860 (60%) cases (Supplementary Table  1), were 
obtained from immunohistochemistry staining. Immu-
nohistochemistry expression of ER was abstracted from 
the medical records for n = 496 cases from Phases 1 and 
2. For the remainder (n = 206 cases from Phases 1 and 2,

and n = 2158 cases from Phase 3), formalin-fixed paraffin-
embedded tumor blocks were requested from participating 
pathology laboratories. Tumor blocks were used to generate 
whole sections for all cases in Phases 1 and 2, and for 473 
(22%) cases in Phase 3. For the remainder of cases in Phase 
3 (n = 1685, 78%), tumor blocks were used to generate tissue 
microarrays, as previously described [2]. Immunohistochem-
istry staining was performed at the Immunohistochemistry 
Core Laboratory at UNC, and quantified using automated 
image analysis, as previously described [2]. When data were 
combined across Phases, demographic and tumor character-
istics of cases with and without quantitative ER were similar 
(Supplementary Table 1).

Among ER-positive cases, we categorized ER expression 
as borderline (≥ 1–< 10%), low (≥ 10–< 40%), intermediate 
(≥ 40–< 80%), high (≥ 80%), and very high (≥ 95%). Expres-
sion categories were selected to be in line with a previous 
study [10] and to avoid sparse sample sizes in any given 
category.

Genomic analyses

Nanostring assays were used to measure PAM50 gene sig-
nature [11], which includes ESR1 gene, on n = 1965 cases 
from the Carolina Breast Cancer Study. Assays were per-
formed in the Rapid Adoption Molecular (RAM) laboratory 
at UNC as previously described [12, 13]. Cases with and 
without RNA data had similar demographic and tumor char-
acteristics (Supplementary Table 1). PAM50 subtype was 
determined using a similarity-to-centroid approach as previ-
ously described [11, 13] to classify breast tumors into four 
intrinsic subtypes (Luminal A, Luminal B, HER2-enriched, 
Basal-like). Tumors classified as normal-like (n = 66) were 
excluded from our analysis, given that this classification is 
thought to arise from extensive normal epithelial or stro-
mal content in the tumor [14]. ESR1 gene expression was 
median-centered and standardized to zero mean and unit 
variance, then categorized into quartiles based on expression 
levels in all cases.

We assembled a large validation genomics dataset of 
invasive breast cancer cases (n = 8103) by pooling publicly 
available data from The Cancer Genome Atlas (TCGA) [15], 
the Molecular Taxonomy of Breast Cancer International 
Consortium (METABRIC; EGAS00000000083) [16, 17], 
the Sweden Cancerome Analysis Network-Breast Initiative 
(SCAN-B; GSE81538 and GSE96058) [18], the UNC337 
dataset from the UNC Microarray Database (GSE18229) 
[19], a previously pooled set of human breast tumors 
(GSE26338, GSE2034, GSE12276, GSE2603) [20] and the 
MD Anderson Cancer Center dataset (MDACC; GSE25066) 
[21]. PAM50 subtype was assigned in the validation cohort 
as described above for the Carolina Breast Cancer Study.



Statistical analysis

We constructed smoothed age frequency distributions at 
diagnosis (i.e., density plots) across categories of ER protein 
expression, across quartiles of ESR1 gene expression, and 
according to the intrinsic PAM50 subtype. Within each cat-
egory defined by molecular or genomic characteristics, we 
assessed the performance of a single density model versus 
a two-component mixture model. We explored two differ-
ent parameterizations of the data: a normal density, and a 
semi-nonparametric density with a polynomial component 
to allow for skewness and heavy tails in the distributions. 
Single density and two-component mixture models were 
each evaluated using normal density and semi-nonparamet-
ric density parameters, producing a total of four models for 
comparison within each molecular or genomic category. 
Models were compared using Akaike information criterion 
(AIC) values, with smaller AIC values indicating a better 
fit. Using this approach, we first identified the top-ranking 
single density model and the top-ranking two-component 
mixture model, and we then compared the goodness of fit 
between these two models using the difference in their AIC 
values (ΔAIC), with ΔAIC > 10 indicating a substantial dif-
ference in the goodness of fit between the two models and 
a ΔAIC 4–10 indicating a difference in the goodness of fit 
between the models, albeit with slightly less confidence 
than a value > 10 [22]. For all categories determined to be 
bimodal, two-component statistical mixture models were 
applied to estimate the mixing proportion of early-onset 
(p-early) and late-onset (p-late) modes or peaks within each 
category, as previously described [5, 23].

Analysis was performed in the validation cohort as 
described above for the Carolina Breast Cancer Study.

Statistical analysis was conducted in SAS version 9.4 
(SAS Institute, Cary, NC).

Results

Age distributions at diagnosis by ER and ESR1 
expression level

As illustrated in Fig. 1, the age distribution at breast cancer 
diagnosis showed a bimodal pattern in every ER category 
with early- and late-onset incidence peaks (or modes) near 
ages 45 and 65 years, respectively. While the proportion of 
cases within the late-onset peak decreased across decreasing 
categories of ER expression (Fig. 1, green line), the modal 
ages remained unchanged near 45 and 65 years. ER-negative 
cases (< 1% ER) and those with borderline (≥ 1–< 10%), low 
(≥ 10–< 40%), and intermediate (≥ 40–< 80%) ER expres-
sion levels had predominant early-onset peaks. In contrast, 
cases with high (≥ 80% and ≥ 95%) ER expression had 

predominant late-onset peaks (blue line). A bimodal pat-
tern with shifting age-at-onset distributions but stable modes 
near 45 and 65 years was also observed when different clini-
cal definitions of ER-positive status (i.e., ≥ 1% vs. ≥ 10%) 
were considered (Supplementary Fig. 1 and Supplementary 
Table 2).

Consistent with bimodal age distributions at diagnosis for 
all density plots (Fig. 1), a two-component mixture model 
fit the data better than a single density for all categories of 
ER expression (Table 1). As shown in Table 1, the majority 
of ΔAIC values were greater than 10, indicating substantial 
confidence that the two-component mixture model provided 
the best fit for our data. One exception was noted for the 
ER-borderline group, where ΔAIC lay between 4 and 10, 
still indicating that the two-component mixture model pro-
vided better fit, albeit with a slightly lower certainty. Cases 
with lower ER levels had a greater probability of belong-
ing to the early-onset than the late-onset age distribution 
(e.g., p-early = 0.77, 0.88, 0.75, and 0.74 for cases with 
negative, borderline, low and intermediate ER expression, 
respectively). The proportion of early-onset age distribu-
tion further declined for cases with high and very high ER 
expression (e.g., p-early = 0.58 and p-early = 0.50, for cases 
with ≥ 80% and ≥ 95% ER expression levels, respectively). 
While ER expression level affected the mixing proportion, 
the early- and late-onset modes remained unchanged near 
ages 45 and 65.

Similar patterns were observed in race-stratified analy-
ses (Supplementary Figs. 2, 3 and Supplementary Table 2), 
albeit with more pronounced early-onset peaks in black vs. 
white women both overall (e.g., p-early = 0.66 for white 
women, p-early = 0.75 for black women) and by ER status 
(e.g., p-early = 0.61 and 0.79 for cases with ER ≥ 10% and 
< 10% in white women, p-early = 0.72 and 0.83 for cases 
with ER ≥ 10% and < 10% in black women).

As shown in Fig. 2, classifying cases by quartiles of ESR1 
gene expression recapitulated bimodal age distributions 
at diagnosis observed across categories of immunohisto-
chemistry-based ER expression levels. While modal ages 
remained constant near ages 45 and 65, the proportion of 
late-onset cases gradually decreased across decreasing quar-
tiles of ESR1 expression (Q4 p-late = 0.31, Q3 p-late = 0.25, 
Q2 p-late = 0.22, Q1 p-late = 0.13; as shown in Table 1).

Age distributions at diagnosis by genomic 
and tumor characteristics

In Fig. 3, we show that age at diagnosis was bimodally 
distributed for all PAM50 intrinsic subtypes. Basal-like, 
HER2-enriched, and Luminal B cancers all had predominant 
early-onset peaks with minor late-onset peaks, whereas the 
late-onset peak was most pronounced in Luminal A cancers.



In keeping with the bimodal appearance of the den-
sity plots, we found that each intrinsic subtype was best 
described by a two-component mixture model (Table 1). 
The proportion of late-onset age distribution decreased 
across intrinsic subtype categories, from Luminal A 
(p-late = 0.30), Luminal B (p-late = 0.26), HER2-enriched 
(p-late = 0.16), with Basal-like showing the lowest prob-
ability of late-onset disease (p-late = 0.11; Table 1). As we 
observed for ER and ESR1 expression, while the mixing 
proportion was affected by intrinsic tumor subtype, the 
early- and late-onset modal ages remained near ages 45 
and 65. As shown in Table 1, the majority of ΔAIC values 
were greater than 10, indicating substantial confidence that 
the two-component mixture model provided the best fit for 
our data. One exception was noted for the HER2-enriched 
subtype, where ΔAIC was equal to 10, still indicating that 
the two-component mixture model provided better fit, 
albeit with a slightly lower certainty. Similar patterns were 
observed in a large validation dataset of > 8000 invasive 

breast cancers, where all PAM50 subtypes were bimodally 
distributed with a declining probability of late-onset from 
Luminal A to Luminal B to HER2-enriched to Basal-like, 
mirrored by an increasing probability of early-onset across 
these subtypes (Supplementary Fig. 4 and Supplementary 
Table 3).

Likewise, all tumors categorized by high-risk and low-
risk tumor characteristics were best described by a two-
component mixture model, with modal ages near 45 and 
65 years (Supplementary Fig. 5). The proportion of early-
onset cancers increased with increasing combined grade. 
Similarly, larger tumors and tumors with multiple posi-
tive lymph nodes were more likely to belong to the early-
onset distribution, compared to smaller and node-negative 
tumors (Supplementary Table 4).

Combined categories of molecular, genomic and tumor 
characteristics also failed to isolate a single population, 
with every combination best described by a two-compo-
nent mixture model (data not shown).
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Fig. 1  Density plots showing age frequency at diagnosis for invasive breast cancer cases from the Carolina Breast Cancer Study across immuno-
histochemistry-based ER categories



Discussion

The identification of at least four distinct intrinsic breast 
cancer subtypes [24] has guided the development of targeted 
therapy and contributed to improved breast cancer survival 
rates. However, it has been posited that breast cancer is com-
prised of just two etiologically distinct groups [4, 25], with 
ER status currently serving as the most widely used surro-
gate of these two subtypes [26]. Though not optimized for 
this purpose, classifying tumors by ER status has advanced 
our understanding of breast cancer risk factors. For example, 
increasing parity is inversely associated with risk of ER-
positive breast cancer but positively associated with risk of 
ER-negative breast cancer, an effect that can be partially 
offset by breastfeeding [27, 28]. Under this proposed model, 
breast cancer is a two-component mixture of ER-positive 

and ER-negative tumor populations [4], with differences in 
quantitative levels of ER expression reflecting enrichment 
for one or other population. Building on this hypothesis, our 
work in the Carolina Breast Cancer Study shows that breast 
cancer bimodality is a robust characteristic observed across 
molecular and genomic tumor features.

Prior research using publicly available registry data from 
the US [5], as well as data from Europe [29], Africa [7, 30], 
and Asia [31], has established bimodal age at diagnosis as 
a universal feature of female breast cancer. Breast cancer 
bimodality has also been observed within categories defined 
by ER status [4], high-risk and low-risk tumor characteris-
tics [32] and histologic subtype [5]. A notable exception to 
this bimodal age distribution at diagnosis is medullary car-
cinoma [5], a rare early-onset sporadic breast cancer that is 
linked to ER-negative and triple negative cancers, Basal-like 

Table 1  Comparison of single density versus two-component mixture model fit across molecular tumor categories in Carolina Breast Cancer 
Study cases, and estimates for early-onset and late-onset modes and mixing proportions for the selected model

a Positive values favor the two-component mixture model and negative values favor the single density model, with ΔAIC 4–10 indicating little 
support for the lower-ranking model and ΔAIC > 10 indicating essentially no support for the lower-ranking model [22]
b Modes and mixing proportions are shown for the two-component mixture model, found to provide the best fit for all categories shown

Total cases, 
n (%)

Median 
age at 
diagnosis 
(years)

Model fit (AIC) Modeb (years) Mixing  proportionb

AIC-
single density

AICtwo-component mixture Δa
AIC 

 (AICsingle − 
 AICmixture)

Early onset Late onset Early onset Late onset

Protein-based 
categories

 Overall 2860 50 21,947.02 21,657.60 289.42 46 67 0.72 0.28
 ER protein 

expression
  ≥ 95% 133 (5) 62 1022.84 998.24 24.60 51 67 0.50 0.50
  ≥ 80% 840 (29) 57 6455.88 6362.56 93.32 48 66 0.58 0.42
  ≥ 40–< 80% 733 (26) 49 5560.16 5489.42 70.74 46 65 0.74 0.26
  ≥ 10–< 40% 313 (11) 48 2396.44 2343.82 52.62 45 66 0.75 0.25
  ≥ 1–< 10% 217 (8) 48 1637.76 1629.84 7.92 47 67 0.88 0.12
  < 1% 757 (26) 48 5728.58 5695.14 33.44 45 64 0.77 0.23

RNA-based 
categories

 Overall 1965 49 15,092.82 14,899.46 193.36 47 67 0.76 0.24
 ESR1 gene 

expression
  Quartile 4 492 (25) 53 3792.24 3722.54 69.70 48 67 0.69 0.31
  Quartile 3 491 (25) 49 3738.00 3676.14 61.86 47 66 0.75 0.25
  Quartile 2 491 (25) 49 3808.52 3770.84 37.68 47 67 0.78 0.22
  Quartile 1 491 (25) 48 3730.72 3714.70 16.02 47 67 0.87 0.13

 PAM50 sub-
type

  Luminal A 898 (47) 53 6886.04 6757.64 128.40 48 67 0.70 0.30
  Luminal B 269 (14) 48 2071.28 2054.12 17.16 45 65 0.74 0.26
  Her2-

enriched
174 (9) 48 1328.06 1318.02 10.04 47 67 0.84 0.16

  Basal-like 558 (29) 47 4260.84 4239.44 21.40 47 69 0.89 0.11



tumor features [33], and the BRCA1 mutation [34]. While 
developments in molecular and genomic tumor profiling 
technologies have advanced the field of breast cancer sub-
typing for prognosis and prediction, national cancer regis-
tries are limited to tumor characteristics reported in medical 
records and therefore lack these data. In the present study, 
we used quantitative ER expression and RNA data from 
the Carolina Breast Cancer Study to explore evidence for 
bimodality within groups defined by molecular and genomic 
features. We report that although certain molecular and 

genomic tumor characteristics enriched for either early-onset 
or late-onset breast cancer, we were unable to separate early-
onset from late-onset breast cancer using existing molecular 
or genomic classifications, or any combinations thereof.

Interpretation of quantitative immunohistochemistry-
based ER levels has been subject to some controversy. 
Replacement of the radio ligand-binding assay with immu-
nohistochemistry for measuring ER status was accompanied 
by observations that ER expression was bimodally distrib-
uted [35]. Rimm and others have argued that the bimodal 
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Fig. 2  Density plots showing age frequency at diagnosis for invasive breast cancer cases from the Carolina Breast Cancer Study across RNA-
based ESR1 quartiles



distribution of ER expression is an artifact of immunohis-
tochemistry staining methods, which have been optimized 
to maximize the sensitivity of the assay [36, 37]. Indeed, 
we have observed a greater dynamic range of ESR1 expres-
sion, compared to that of immunohistochemistry-based ER 
expression which becomes saturated at higher levels of ESR1 
[38]. However, several studies have since shown evidence 
for bimodal distribution not only of quantitative immuno-
histochemistry-based ER expression [39] but also of ESR1 
levels [39, 40], which are not subject to concerns regarding 

immunohistochemistry methodology. Herein, we build on 
evidence for breast cancer bimodality by showing bimodal 
age-at-incidence across categories of immunohistochemis-
try-based ER expression, ESR1 levels, as well as PAM50 
intrinsic subtype. As such, this manuscript bolsters evidence 
for bimodal age distribution at diagnosis as a universal char-
acteristic of female breast cancer.

Breast cancer bimodality is consistent with tumors being 
derived from two distinct progenitor cell types, basal/myoep-
ithelial versus luminal [4]. Large-scale genomic analyses 
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Fig. 3  Density plots showing age frequency at diagnosis for invasive breast cancer cases from the Carolina Breast Cancer Study across PAM50 
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have recently challenged the classification of cancers accord-
ing to their tissue-of-origin. Using multi-platform genomic 
analyses, Hoadley et al. found that although most tumor 
types were classified by tissue-of-origin, several distinct 
cancer types converged into common subtypes regardless 
of tissue-of-origin, while others diverged into multiple sub-
types within the tissue-of-origin classifications [25]. Breast 
cancer provided one of the most striking examples of this 
divergence, with Luminal/HER2-enriched and Basal-like 
breast cancers forming separate clusters as distinct from each 
other as from other tissue-of-origin cancer types (e.g., lung). 
Moreover, this integrated analysis revealed that marked 
molecular differences were observed between epithelial 
tumors arising from basal cell versus secretory cell types, 
suggesting that cell type-of-origin dominates molecular tax-
onomy of breast and other cancer types [25]. Shared etiol-
ogy across cancers with different tissue-of-origin but shared 
cell type-of-origin (e.g., smoking as a shared risk factor for 
squamous bladder, head and neck and non-small cell lung 
cancers) may highlight the importance of classifying breast 
cancer according to the cell type-of-origin for understand-
ing breast cancer etiology. Future studies should pursue the 
identification of molecular characteristics that can separate 
etiologically distinct subtypes of breast cancer.

Our findings should be considered in the context of sev-
eral limitations. First, though a population-based study, the 
Carolina Breast Cancer Study oversampled for young and 
African American women. Our analysis did not account for 
this sampling schema and thus our population distribution 
is shifted toward younger ages relative to national distribu-
tions of breast cancer incidence. This is highlighted by our 
finding that modal ages for early and late-onset distribu-
tions lie at ages 45 and 65, whereas data from SEER breast 
cancer cases show that modes are closer to 50 and 70 years 
of age [5]. Restricting SEER data to the age range of the 
Carolina Breast Cancer Study produced similar bimodal age 
distributions at diagnosis (data not shown), suggesting that 
the slightly younger modes in the Carolina Breast Cancer 
Study may be due to the restricted age range at breast can-
cer diagnosis in the Carolina Breast Cancer Study (20–74) 
versus SEER (currently 10–117). However, rather than the 
absolute modal age which depends on the age distribution in 
the underlying population, the key attribute of these modes 
is that they are stable across molecular categories. Second, 
lower numbers of cases particularly in ER-borderline (ER 
1–10%) and HER2-enriched categories may have limited 
our ability to discriminate between single density and two-
component mixture models, as evidenced by ΔAIC values 
between 4 and 10. However, ΔAIC values in this range still 
provide support for a bimodal age distribution at diagnosis 
for these subgroups, albeit with a slightly lower certainty 
than when ΔAIC is greater than 10 [22]. Third, although 
we had insufficient sample size to perform race-stratified 

analysis for each of the molecular subtypes, we were able to 
perform race-stratified analyses both overall and by ER sta-
tus. Indeed, our race-stratified results are in agreement with 
findings from SEER analyses [5, 6], showing a larger pro-
portion of early-onset cases among black women. Strengths 
of this study include the large number of African American 
women, a racial group disproportionately affected by high-
risk breast cancer [12], as well as access to high quality 
molecular and genomic data for a large number of breast 
cancer cases.

Conclusions

Using data from the Carolina Breast Cancer Study, we 
found evidence for a bimodal age distribution at breast can-
cer diagnosis both overall and within categories defined by 
molecular and genomic characteristics. While tumor sub-
groups defined by high-risk features (e.g., low immunohisto-
chemistry-based ER levels, low ESR1 expression, Basal-like 
subtype) showed enrichment for early-onset breast cancer, 
all of these categories and combinations thereof were best 
described by a two-component mixture model. Better crite-
ria to distinguish these two etiologic subtypes could advance 
our understanding of breast cancer risk factors and inform 
prevention efforts.
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