42 research outputs found

    Reduced antioxidant enzyme activity in brains of mice transgenic for human presenilin-1 with single or multiple mutations

    Get PDF
    Alzheimer's disease-related mutations in the presenilin-1 gene (PS1) are leading to an elevated production of neurotoxic beta-amyloid 1-42 and may additionally enhance oxidative stress. Here, we provide in vivo evidence indicating that brains of transgenic mice expressing different human Alzheimer-linked PS1 mutations exhibit a reduced activity of two antioxidant enzymes. For this purpose, mice transgenic for human PS1 and for single and multiple PS1 mutations were generated. Mice with multiple PS1 mutations showed a significantly decreased activity of the antioxidant enzymes Cu/Zn superoxide dismutase and glutathione reductase already at an age of 3-4 months. As expected, this effect was less pronounced for the mice with a single PS1 mutation. By contrast, animals bearing normal human PS1 showed significantly elevated enzyme activities relative to non-transgenic littermate controls

    Alzheimer's disease-like alterations in peripheral cells from presenilin-1 transgenic mice

    Get PDF
    Many cases of early-onset inherited Alzheimer's disease (AD) are caused by mutations in the presenilin-1 (PS1) gene. Expression of PS1 mutations in cell culture systems and in primary neurons from transgenic mice increases their vulnerability to cell death. Interestingly, enhanced vulnerability to cell death has also been demonstrated for peripheral lymphocytes from AD patients. We now report that lymphocytes from PS1 mutant transgenic mice show a similar hypersensitivity to cell death as do peripheral cells from AD patients and several cell culture systems expressing PS1 mutations. The cell death-enhancing action of mutant PS1 was associated with increased production of reactive oxygen species and altered calcium regulation, but not with changes of mitochondrial cytochrome c. Our study further emphasizes the pathogenic role of mutant PS1 and may provide the fundamental basis for new efforts to close the gap between studies using neuronal cell lines transfected with mutant PS1, neurons from transgenic animals, and peripheral cells from AD patients. Copyright 2001 Academic Press

    Impact of aging : sporadic, and genetic risk factors on vulnerability to apoptosis in Alzheimer's disease

    Get PDF
    The identification of specific genetic (presenilin-1 [PS1] and amyloid precursor protein [APP] mutations) and environmental factors responsible for Alzheimer's disease (AD) has revealed evidence for a shared pathway of neuronal death. Moreover, AD-specific cell defects may be observed in many other nonneuronal cells (e.g., lymphocytes). Thus, lymphocytes may serve as a cellular system in which to study risk factors of sporadic, as well as genetic AD in vivo. The aim of our present study was to clarify whether lymphocytes bearing genetic or sporadic risk factors of AD share an increased susceptibility to cell death. Additionally we examined whether a cell typespecific vulnerability pattern was present and how normal aging, the main risk factor of sporadic AD, contributes to changes in susceptibility to cell death. Here, we report that lymphocytes affected by sporadic or genetic APP and PS1 AD risk factors share an increased vulnerability to cell death and exhibit a similar cell type-specific pattern, given that enhanced vulnerability was most strongly developed in the CD4+ T-cell subtype. In this paradigm, sporadic risk factors revealed the highest impact on cell type-specific sensitivity of CD4+ T cells to apoptosis. In contrast, normal aging results in an increased susceptibility to apoptosis of both, CD4+ and CD8+ T cells

    MicroRNAs MiR-17, MiR-20a, and MiR-106b Act in Concert to Modulate E2F Activity on Cell Cycle Arrest during Neuronal Lineage Differentiation of USSC

    Get PDF
    MicroRNAs are short (∼22 nt) non-coding regulatory RNAs that control gene expression at the post-transcriptional level. Here the functional impact of microRNAs on cell cycle arrest during neuronal lineage differentiation of unrestricted somatic stem cells from human cord blood (USSC) was analyzed./M transition. Most strikingly, miR-17, -20a, and -106b were found to promote cell proliferation by increasing the intracellular activity of E2F transcription factors, despite the fact that miR-17, -20a, and -106b directly target the transcripts that encode for this protein family./S transition

    HE-LHC: The High-Energy Large Hadron Collider: Future Circular Collider Conceptual Design Report Volume 4

    Get PDF
    In response to the 2013 Update of the European Strategy for Particle Physics (EPPSU), the Future Circular Collider (FCC) study was launched as a world-wide international collaboration hosted by CERN. The FCC study covered an energy-frontier hadron collider (FCC-hh), a highest-luminosity high-energy lepton collider (FCC-ee), the corresponding 100 km tunnel infrastructure, as well as the physics opportunities of these two colliders, and a high-energy LHC, based on FCC-hh technology. This document constitutes the third volume of the FCC Conceptual Design Report, devoted to the hadron collider FCC-hh. It summarizes the FCC-hh physics discovery opportunities, presents the FCC-hh accelerator design, performance reach, and staged operation plan, discusses the underlying technologies, the civil engineering and technical infrastructure, and also sketches a possible implementation. Combining ingredients from the Large Hadron Collider (LHC), the high-luminosity LHC upgrade and adding novel technologies and approaches, the FCC-hh design aims at significantly extending the energy frontier to 100 TeV. Its unprecedented centre-of-mass collision energy will make the FCC-hh a unique instrument to explore physics beyond the Standard Model, offering great direct sensitivity to new physics and discoveries

    FCC-ee: The Lepton Collider – Future Circular Collider Conceptual Design Report Volume 2

    Get PDF

    HE-LHC: The High-Energy Large Hadron Collider – Future Circular Collider Conceptual Design Report Volume 4

    Get PDF
    In response to the 2013 Update of the European Strategy for Particle Physics (EPPSU), the Future Circular Collider (FCC) study was launched as a world-wide international collaboration hosted by CERN. The FCC study covered an energy-frontier hadron collider (FCC-hh), a highest-luminosity high-energy lepton collider (FCC-ee), the corresponding 100 km tunnel infrastructure, as well as the physics opportunities of these two colliders, and a high-energy LHC, based on FCC-hh technology. This document constitutes the third volume of the FCC Conceptual Design Report, devoted to the hadron collider FCC-hh. It summarizes the FCC-hh physics discovery opportunities, presents the FCC-hh accelerator design, performance reach, and staged operation plan, discusses the underlying technologies, the civil engineering and technical infrastructure, and also sketches a possible implementation. Combining ingredients from the Large Hadron Collider (LHC), the high-luminosity LHC upgrade and adding novel technologies and approaches, the FCC-hh design aims at significantly extending the energy frontier to 100 TeV. Its unprecedented centre-of-mass collision energy will make the FCC-hh a unique instrument to explore physics beyond the Standard Model, offering great direct sensitivity to new physics and discoveries

    FCC-hh: The Hadron Collider: Future Circular Collider Conceptual Design Report Volume 3

    Get PDF
    In response to the 2013 Update of the European Strategy for Particle Physics (EPPSU), the Future Circular Collider (FCC) study was launched as a world-wide international collaboration hosted by CERN. The FCC study covered an energy-frontier hadron collider (FCC-hh), a highest-luminosity high-energy lepton collider (FCC-ee), the corresponding 100 km tunnel infrastructure, as well as the physics opportunities of these two colliders, and a high-energy LHC, based on FCC-hh technology. This document constitutes the third volume of the FCC Conceptual Design Report, devoted to the hadron collider FCC-hh. It summarizes the FCC-hh physics discovery opportunities, presents the FCC-hh accelerator design, performance reach, and staged operation plan, discusses the underlying technologies, the civil engineering and technical infrastructure, and also sketches a possible implementation. Combining ingredients from the Large Hadron Collider (LHC), the high-luminosity LHC upgrade and adding novel technologies and approaches, the FCC-hh design aims at significantly extending the energy frontier to 100 TeV. Its unprecedented centre of-mass collision energy will make the FCC-hh a unique instrument to explore physics beyond the Standard Model, offering great direct sensitivity to new physics and discoveries

    HE-LHC: The High-Energy Large Hadron Collider

    Get PDF
    In response to the 2013 Update of the European Strategy for Particle Physics (EPPSU), the Future Circular Collider (FCC) study was launched as a world-wide international collaboration hosted by CERN. The FCC study covered an energy-frontier hadron collider (FCC-hh), a highest-luminosity high-energy lepton collider (FCC-ee), the corresponding 100 km tunnel infrastructure, as well as the physics opportunities of these two colliders, and a high-energy LHC, based on FCC-hh technology. This document constitutes the third volume of the FCC Conceptual Design Report, devoted to the hadron collider FCC-hh. It summarizes the FCC-hh physics discovery opportunities, presents the FCC-hh accelerator design, performance reach, and staged operation plan, discusses the underlying technologies, the civil engineering and technical infrastructure, and also sketches a possible implementation. Combining ingredients from the Large Hadron Collider (LHC), the high-luminosity LHC upgrade and adding novel technologies and approaches, the FCC-hh design aims at significantly extending the energy frontier to 100 TeV. Its unprecedented centre-of-mass collision energy will make the FCC-hh a unique instrument to explore physics beyond the Standard Model, offering great direct sensitivity to new physics and discoveries

    FCC-hh: The Hadron Collider: Future Circular Collider Conceptual Design Report Volume 3

    Get PDF
    In response to the 2013 Update of the European Strategy for Particle Physics (EPPSU), the Future Circular Collider (FCC) study was launched as a world-wide international collaboration hosted by CERN. The FCC study covered an energy-frontier hadron collider (FCC-hh), a highest-luminosity high-energy lepton collider (FCC-ee), the corresponding 100 km tunnel infrastructure, as well as the physics opportunities of these two colliders, and a high-energy LHC, based on FCC-hh technology. This document constitutes the third volume of the FCC Conceptual Design Report, devoted to the hadron collider FCC-hh. It summarizes the FCC-hh physics discovery opportunities, presents the FCC-hh accelerator design, performance reach, and staged operation plan, discusses the underlying technologies, the civil engineering and technical infrastructure, and also sketches a possible implementation. Combining ingredients from the Large Hadron Collider (LHC), the high-luminosity LHC upgrade and adding novel technologies and approaches, the FCC-hh design aims at significantly extending the energy frontier to 100 TeV. Its unprecedented centre of-mass collision energy will make the FCC-hh a unique instrument to explore physics beyond the Standard Model, offering great direct sensitivity to new physics and discoveries
    corecore